3D printing for preoperative planning and surgical training: a review

Springer Science and Business Media LLC - Tập 20 - Trang 1-24 - 2018
Anurup Ganguli1,2, Gelson J. Pagan-Diaz1,2, Lauren Grant1,2, Caroline Cvetkovic1,2,3, Mathew Bramlet4,5, John Vozenilek6,4,5,7, Thenkurussi Kesavadas5,7, Rashid Bashir1,2,8,9
1Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
2Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, USA
3Center for Neuroregeneration, Houston Methodist Research Institute, Houston, USA
4OSF Saint Francis Medical Center, University of Illinois College of Medicine at Peoria, Urbana, USA
5Jump Trading Simulation & Education Center, Peoria, USA
6Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, USA
7Healthcare Engineering Systems Center, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
8Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
9Carle Illinois College of Medicine, Urbana, USA

Tóm tắt

Surgeons typically rely on their past training and experiences as well as visual aids from medical imaging techniques such as magnetic resonance imaging (MRI) or computed tomography (CT) for the planning of surgical processes. Often, due to the anatomical complexity of the surgery site, two dimensional or virtual images are not sufficient to successfully convey the structural details. For such scenarios, a 3D printed model of the patient’s anatomy enables personalized preoperative planning. This paper reviews critical aspects of 3D printing for preoperative planning and surgical training, starting with an overview of the process-flow and 3D printing techniques, followed by their applications spanning across multiple organ systems in the human body. State of the art in these technologies are described along with a discussion of current limitations and future opportunities.

Tài liệu tham khảo

P. Abdel-Sayed, L. Von Segesser, in Adv. Appl. Rapid Prototyp. Technol. Mod. Eng.. Rapid prototyping for training purposes in cardiovascular surgery (2011) P. Abdel-Sayed, M. Kalejs, L.K. von Segesser, A new training set-up for trans-apical aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 8, 599–601 (2009) N. Adolphs, W. Liu, E. Keeve, B. Hoffmeister, Craniomaxillofacial surgery planning based on 3D models derived from Cone-Beam CT data. Comput. Aided Surg. 18(5–6), 101–108 (2013) D.-G. Ahn, J.-Y. Lee, D.-Y. Yang, Rapid prototyping and reverse engineering application for orthopodeic surgery planning. J. Mech. Sci. Technol. 20(1), 19–28 (2006) M. Akaike et al., Simulation-based medical education in clinical skills laboratory. J. Med. Invest. 59(1, 2), 28–35 (2012) O. Al-Mefty, J.L. Fox, A. Rifai, R.R. Smith, A combined infratemporal and posterior fossa approach for the removal of giant glomus tumors and chondrosarcomas. Surg. Neurol. 28(6), 423–431 (Dec. 1987) T. Andrew and H. Piggott, Growth arrest for progressive scoliosis. Combined anterior and posterior fusion of the convexity. J. Bone Jt. Surg. …, (1985) E. Angeli, D. Pacini, S. Martin-Suarez, A. Dell’Amore, R. Fattori, R. Di Bartolomeo, Stent repair of aortic perianastomotic leak after aortic arch and descending aorta replacement. Ital. Heart J. Off. J. Ital. Fed. Cardiol. 5(12), 951–953 (Dec. 2004) D. Bakhos, S. Velut, A. Robier, M. Al Zahrani, E. Lescanne, Three-dimensional modeling of the temporal bone for surgical training. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol., 328–334 (2009) E. Berry et al., Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med. Eng. Phys. 19(1), 90–96 (1997) E. Berry, A. Marsden, K.W. Dalgarno, D. Kessel, D.J. Scott, Flexible tubular replicas of abdominal aortic aneurysms. Proc. Inst. Mech. Eng. H J. Eng. Med. 216(3), 211–214 (2002) Bertalanffy, The dorsolateral, suboccipital, transcondylar approach to the lower clivus and anterior portion of the craniocervical junction. Neurosurgery 29(6), 815–821 (1991) J.S. Bill et al., Stereolithography in oral and maxillofacial operation planning. Int. J. Oral Maxillofac. Surg. 24(1), 98–103 (Feb. 1995) G.A. Brown, K. Firoozbakhsh, T. a DeCoster, J.R. Reyna, M. Moneim, Rapid prototyping: the future of trauma surgery? J. Bone Joint Surg. Am. 85(A Suppl), 49–55 (2003) R. Bryan, J. Rand, Revision total knee arthroplasty (Clin. Orthop, 1982) S. Bustamante, S. Bose, P. Bishop, R. Klatte, F. Norris, Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J. Cardiothorac. Vasc. Anesth. 28(4), 1134–1137 (2014) R.M. Carr, R.H. Mathog, Early and delayed repair of orbitozygomatic complex fractures. J. Oral Maxillofac. Surg. 55(3), 253–258 (Mar. 1997) V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab. Chip 10(16), 2062–2070 (Aug. 2010) C.L. Cheung, T. Looi, T.S. Lendvay, J.M. Drake, W.a. Farhat, Use of 3-dimensional printing technology and silicone modeling in surgical simulation: Development and face validation in pediatric laparoscopic pyeloplasty. J. Surg. Educ. 71(5), 762–767 (2014) C. K. Chong, J. Brennan, T. V How, R. Edwards, G. L. Gilling-Smith, and P. L. Harris, “A prototype simulator for endovascular repair of abdominal aortic aneurysms.,” Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg., vol. 13, no. 3, pp. 330–333, 1997. A. Cohen, A. Laviv, P. Berman, R. Nashef, J. Abu-Tair, Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 108(5), 661–666 (2009) J.J. Collins, S.F. Aranki, Management of mild aortic stenosis during coronary artery bypass graft surgery. J. Card. Surg. 9(s2), 145–147 (Mar. 1994) J.P. Costello et al., Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J. Pediatr. Congenit. Heart Surg. 5(3), 421–426 (2014) J.P. Costello et al., Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2), 185–190 (2015) J. Cui, L. Chen, X. Guan, L. Ye, H. Wang, L. Liu, Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J. Oral Maxillofac. Surg. 72(6), 1138.e1–1138.e14 (2014) L.L. Cunningham, M.J. Madsen, G. Peterson, Stereolithographic modeling technology applied to tumor resection. J. Oral Maxillofac. Surg. 63(6), 873–878 (2005) P.S. D’Urso et al., Stereolithographic (SL) biomodelling in craniofacial surgery. Br. J. Plast. Surg. 51(7), 522–530 (Oct. 1998) P.S. D’Urso et al., Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 53(3), 200–204 (Apr. 2000) E. Debarre, P. Hivart, D. Baranski, P. Déprez, Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthop. Traumatol. Surg. Res. 98(5), 597–602 (2012) R. Dhakshyani, Y. Nukman, N.A.A. Osman, A.M. Merican, J. George, Rapid prototyping medical models for dysplastic hip orthopaedic surgery. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224(5), 769–776 (2010) R. Dhakshyani, Y. Nukman, N.A. Abu Osman, Rapid prototyping models for dysplastic hip surgeries in Malaysia. Eur. J. Orthop. Surg. Traumatol. 22(1), 41–46 (2012) B.O. Erbano et al., Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cirúrgica Bras. Soc. Bras. Para Desenvolv. Pesqui. Em Cir. 28(11), 756–761 (2013) X. Fan, H. Zhou, M. Lin, Y. Fu, J. Li, Late reconstruction of the complex orbital fractures with computer-aided design and computer-aided manufacturing technique. J. Craniofac. Surg. 18(3), 665–673 (2007) M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni, Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. (2018) S.F. Fighali et al., Early and late mortality of patients undergoing aortic valve replacement after previous coronary artery bypass graft surgery. Circulation 92(9), 163–168 (Nov. 1995) U. Fisch, The infratemporal approach to glomus jugulare tumors. Neurochirurgie. 31(5), 367–376 (Jan. 1985) D.H. Frakes, M.J.T. Smith, J. Parks, S. Sharma, S.M. Fogel, A.P. Yoganathan, New techniques for the reconstruction of complex vascular anatomies from MRI images. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 7(2), 425–432 (2005) M. Frame, J.S. Huntley, Rapid prototyping in orthopaedic surgery: a user’s guide. ScientificWorldJournal 2012, 838575 (2012) K. Futami, M. Nakada, M. Iwato, D. Kita, T. Miyamori, J. Yamashita, Simulation of clipping position for cerebral aneurysms using three-dimensional computed tomography angiography. Neurol. Med. Chir. (Tokyo) 44(1), 6–13 (Mar. 2004) J. Gateno, M.E. Allen, J.F. Teichgraeber, M.L. Messersmith, An in vitro study of the accuracy of a new protocol for planning distraction osteogenesis of the mandible. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 58(9), 985–990; discussion 990–1 (2000) J. Geerts et al., Functional magnetic resonance imaging for preoperative localisation of eloquent brain areas relative to brain tumours: clinical implementation in a regional hospital. JBR-BTR Organe Société R. Belge Radiol. SRBR Orgaan Van K. Belg. Ver. Voor Radiol. KBVR 90(4), 258–263 (Jan. 2007) K.K. Gnanalingham, V. Apostolopoulos, S. Barazi, K. O’Neill, The impact of the international subarachnoid aneurysm trial (ISAT) on the management of aneurysmal subarachnoid haemorrhage in a neurosurgical unit in the UK. Clin. Neurol. Neurosurg. 108(2), 117–123 (Feb. 2006) G.F. Greil et al., Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin. Res. Cardiol. 96, 176–185 (2007) J. Guarino, S. Tennyson, G. McCain, L. Bond, K. Shea, H. King, Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J. Pediatr. Orthop. 27(8), 955–960 (2007) H.K. Hahn, W.S. Millar, O. Klinghammer, M.S. Durkin, P.K. Tulipano, H.-O. Peitgen, A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Methods Arch. 43(4), 376–382 (2004) H.M. Hidalgo, G.W. Romo, R.T.R. Estolano, Stereolithography: a method for planning the surgical correction of the hypertelorism. J. Craniofac. Surg., vol. 5, 20 (2009) J. Hirsch et al., An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical aread associated with tactile, motor, language, and visual functions. Neurosurgery 47(3), 711–722 (2000) J.I.. Hoffman, S. Kaplan, The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39(12), 1890–1900 (Jun. 2002) D.E. Holck, E.M. Boyd, J. Ng, R.O. Mauffray, Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6), 1214–1218 (1999) C. Hurson, B.O.’.D. a Tansey, P. Nicholson, J. Rice, J. McElwain, Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10), 1158–1162 (2007) S. Jacobs, R. Grunert, F.W. Mohr, V. Falk, 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact. Cardiovasc. Thorac. Surg. 7(1), 6–9 (2008) A.D. Jatene, Left ventricular aneurysmectomy. Resection or reconstruction. J. Thorac. Cardiovasc. Surg. 89(3), 321–331 (Mar. 1985) J.F. John, R.E. Talbert, J.K. Taylor, W.L. Bargar, Use of acetabular models in planning complex acetabular reconstructions. J. Arthroplasty 10(5), 661–666 (Oct. 1995) M. Kalejs, L.K. von Segesser, Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac. Surg. 8, 182–186 (2009) T. Kaminaga, T. Takeshita, I. Kimura, Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur. Radiol., vol. 13 Suppl 6, L1–L10 (Dec. 2003) B. Kavanagh, Cemented revision hip arthroplasty: results, Jt. Replace. Arthroplasty N. Y. Etc Churchill … 1991 Paperpile. C.J. Kellenberger, S.-J. Yoo, E.R.V. Büchel, Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc 27(1), 5–18 (2007) C. Kermer, a. Lindner, I. Friede, a. Wagner, W. Millesi, Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J. Craniomaxillofac. Surg. 26(3), 136–139 (1998) J. Kettenbach et al., Computer-based imaging and interventional MRI: applications for neurosurgery. Comput. Med. Imaging Graph. 23(5), 245–258 (1999) M.S. Kim, A.R. Hansgen, O. Wink, R.A. Quaife, J.D. Carroll, Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117(18), 2388–2394 (2008) T. Kimura et al., Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65(4), 719–726 (2009) K. Knox, C.W. Kerber, S. a Singel, M.J. Bailey, S.G. Imbesi, Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 65(1), 47–53 (2005) M. Kozakiewicz et al., Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J. Cranio-Maxillofac. Surg. 37(4), 229–234 (2009) J.P. Kruth, Material incress manufacturing by rapid prototyping techniques. CIRP Ann. - Manuf. Technol. 40(2), 603–614 (1991) P. Lachiewicz and O. Hussamy, Revision of the acetabulum without cement with use of the Harris-Galante porous-coated implant. Two to eight-year results. J. Bone Jt. Surg., (1994) R. Lazar and J. Hall, Simultaneous anterior and posterior hemivertebra excision. Clin. Orthop., (1999) G.M. Lemole, P.P. Banerjee, C. Luciano, S. Neckrysh, F.T. Charbel, Virtual reality in neurosurgical education. Neurosurgery 61(1), 142–149 (2007) E.A. Longfield, T.M. Brickman, A. Jeyakumar, 3D printed pediatric temporal bone: a novel training model. Otol Neurotol, 793–795 (2015) E. Maravelakis, K. David, A. Antoniadis, A. Manios, N. Bilalis, Y. Papaharilaou, Reverse engineering techniques for cranioplasty: a case study. J. Med. Eng. Technol. 32(2), 115–121 (2008) T. Mashiko et al., Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 83(3), 351–361 (2015) B. Mavčič, B. Pompe, and V. Antolič, Mathematical estimation of stress distribution in normal and dysplastic human hips, J. …, (2002) M. McGurk, A.A. Amis, P. Potamianos, N.M. Goodger, Rapid prototyping techniques for anatomical modelling in medicine. Ann. R. Coll. Surg. Engl. 79(3), 169–174 (May 1997) S. Mohammadi et al., Reoperation for false aneurysm of the ascending aorta after its prosthetic replacement: surgical strategy. Ann. Thorac. Surg. 79(1), 147–152; discussion 152 (Jan. 2005) K. Mori, T. Yamamoto, K. Oyama, H. Ueno, Y. Nakao, K. Honma, Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol. Med. Chir. (Tokyo) 48(12), 582–587; discussion 587–588 (2008) L. Moroni et al., Biofabrication strategies for 3D in vitro models and regenerative medicine, Nature Reviews Materials. 3(5), 21–37, (2018) S. Mottl-Link et al., Physical models aiding in complex congenital heart surgery. Ann. Thorac. Surg. 86(1), 273–277 (2008) B. Mueller, D. Kochan, Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput. Ind. 39(1), 47–53 (1999) A. Müller, K.G. Krishnan, E. Uhl, G. Mast, The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J. Craniofac. Surg. 14, 899–914 (2003) M.C. Murphy et al., Surgical treatment of cardiac tumors: A 25-year experience☆. Ann. Thorac. Surg. 49(4), 612–618 (Apr. 1990) S.F. Mustafa, P.L. Evans, A. Bocca, D.W. Patton, A.W. Sugar, P.W. Baxter, Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int. J. Oral Maxillofac. Surg. 40(12), 1357–1362 (2011) E.M. Ngan et al., The rapid prototyping of anatomic models in pulmonary atresia. J. Thorac. Cardiovasc. Surg. 132(2), 264–269 (2006) A.M. Noecker et al., Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 52(3), 349–353 (2006) M.K. O’Reilly et al., Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine. Anat. Sci. Educ. 00(2010), 1–9 (2015) J.A. Odell, C.J. Mullany, H.V. Schaff, T.A. Orszulak, R.C. Daly, J.J. Morris, Aortic valve replacement after previous coronary artery bypass grafting. Ann. Thorac. Surg. 62(5), 1424–1430 (Nov. 1996) M. Oishi, M. Fukuda, N. Yajima, and K. Yoshida, Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors: Clinical article, J. Of, (2013). M. Oliveira et al., 3-D biomodelling technology for maxillofacial reconstruction. Mater. Sci. Eng. C 28(8), 1347–1351 (2008) L.J. Olivieri, A. Krieger, Y.-H. Loke, D.S. Nath, P.C.W. Kim, C.A. Sable, Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J. Am. Soc. Echocardiogr. 28(4), 392–397 (2015) J.M. Otton et al., Left atrial appendage closure guided by personalized 3d-printed cardiac reconstruction. JACC Cardiovasc. Interv. 8(7), 1004–1006 (2015) P. Ou, D.S. Celermajer, G. Calcagni, F. Brunelle, D. Bonnet, D. Sidi, Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93(8), 908–913 (2007) S.W. Park, J.W. Choi, K.S. Koh, T.S. Oh, Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg., 1540–1553 (2015) J.Y. Park, G. Gao, J. Jang, D.-W. Cho, 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. J. Mater. Chem. B 4(47), 7521–7539 (2016) B.C. Patel, J. Hoffmann, Management of complex orbital fractures. Facial Plast. Surg. FPS 14(1), 83–104 (Jan. 1998) M. Perry, P. Banks, R. Richards, E.P. Friedman, P. Shaw, The use of computer-generated three-dimensional models in orbital reconstruction. Br. J. Oral Maxillofac. Surg. 36(4), 275–284 (1998) P. Potamianos, A.A. Amis, A.J. Forester, M. Mcgurk, M. Bircher, Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng Part H 212, 383–393 (2015) M. Poulsen, C. Lindsay, T. Sullivan, P. D’Urso, Stereolithographic modelling as an aid to orbital brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 44(3), 731–735 (1999) M.D. Reller, M.J. Strickland, T. Riehle-Colarusso, W.T. Mahle, A. Correa, Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J. Pediatr. 153(6), 807–813 (Dec. 2008) F. Rengier et al., 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5(4), 335–341 (2010) M. Robiony et al., Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning. J. Craniofac. Surg. 19(2), 482–489 (2008) D. Rohner, R. Guijarro-Martínez, P. Bucher, B. Hammer, Importance of patient-specific intraoperative guides in complex maxillofacial reconstruction. J. Cranio-Maxillofac. Surg. 41(5), 382–390 (2013) M. Ruf and J. Harms, Hemivertebra resection by a posterior approach: innovative operative technique and first results. Spine, (2002) H.F. Sailer, P.E. Haers, C.P. Zollikofer, T. Warnke, F.R. Carls, P. Stucki, The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int. J. Oral Maxillofac. Surg. 27(5), 327–333 (1998) E.K. Sannomiya, J.V.L. Silva, A.A. Brito, D.M. Saez, F. Angelieri, G. da Silva Dalben, Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod 106, 36–40 (2008) C. Santler, H. Karcher, C. Ruda, Indications and limitations of three-dimensional models in cranio-maxillofacial surgery. J. Craniomaxillofac. Surg. 26(1), 11–16 (1998) R.M. Satava, Accomplishments and challenges of surgical simulation. Surg. Endosc. 15(3), 232–241 (Mar. 2001) S. Schievano et al., Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242(2), 490–497 (2007) D. Schmauss et al., Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann. Thorac. Surg. 93(2), e31–e33 (2012) D. Schmauss, N. Gerber, R. Sodian, Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 145(5), 1407–1408 (2013) I. Shiraishi, M. Yamagishi, K. Hamaoka, M. Fukuzawa, T. Yagihara, Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 37(2), 302–306 (2010) D.P. Sinn, J.E. Cillo, B. a Miles, Stereolithography for craniofacial surgery. J. Craniofac. Surg. 17(5), 869–875 (2006) R. Sodian et al., Stereolithographic models for surgical planning in congenital heart surgery. Ann. Thorac. Surg. 83, 1854–1857 (2007) R. Sodian et al., Pediatric cardiac transplantation: Three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J. Thorac. Cardiovasc. Surg. 136(4), 1098–1099 (2008a) R. Sodian et al., Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann. Thorac. Surg. 85(6), 2105–2108 (2008b) R. Sodian et al., 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann. Thorac. Surg. 88(3), 974–978 (2009) P.J. Spevak, P.T. Johnson, E.K. Fishman, Surgically corrected congenital heart disease: utility of 64-MDCT. AJR Am. J. Roentgenol. 191(3), 854–861 (2008) B.S. Spottiswoode et al., Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact. Funct. Neurosurg. 91(3), 162–169 (2013) A.T. Stadie et al., Virtual reality system for planning minimally invasive neurosurgery. Technical note. J. Neurosurg. 108(2), 382–394 (Feb. 2008) Z.A. Starosolski, J.H. Kan, S.D. Rosenfeld, R. Krishnamurthy, A. Annapragada, Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr. Radiol. 44(2), 216–221 (2014) Y. Su, M. Wang, and W. Chang, Slotted acetabular augmentation in the treatment of painful residual dysplastic hips in adolescents and young adults. J. Formos. Med. …, (2008) M. Suzuki, Y. Ogawa, A. Hagiwara, H. Yamaguchi, H. Ono, Rapidly prototyped temporal bone model for otological education. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 66(2), 62–64 (2004a) M. Suzuki, Y. Ogawa, A. Kawano, A. Hagiwara, H. Yamaguchi, H. Ono, Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol. (Stockh.) 124(4), 400–402 (2004b) M. Suzuki, A. Hagiwara, S. Kawaguchi, H. Ono, Application of a rapid-prototyped temporal bone model for surgical planning. Acta Otolaryngol. (Stockh.) 125(1), 29–32 (Jan. 2005) A. Thompson and D. Marks, Long-term results of combined anterior and posterior convex epiphysiodesis for congenital scoliosis due to hemivertebrae. Spine, (1995) J.W.M. Tyl, L.E.C.M. Blank, L. Koornneef, Brachytherapy in orbital tumors. Ophthalmology 104(9), 1475–1479 (Sep. 1997) M. Umer, A. Thambyah, W. Tan, and S. De, Acetabular morphometry for determining hip dysplasia in the Singaporean population. J. Orthop. …, (2006) P. S. D. Urso et al., A technical note, (1999). I. Valverde et al., Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 52(6), 1139–1148 (Dec. 2017) M. Vranicar, W. Gregory, W.I. Douglas, P. Di Sessa, T.G. Di Sessa, The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud. Health Technol. Inform. 132, 538–543 (Jan. 2008) V. Waran et al., Injecting realism in surgical training—initial simulation experience with custom 3d models. J. Surg. Educ. 71(2), 193–197 (2014a) V. Waran, V. Narayanan, R. Karuppiah, S.L.F. Owen, T. Aziz, Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J. Neurosurg. 120(2), 489–492 (2014b) V. Waran et al., Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul. Healthc. J. Soc. Simul. Healthc. 10(1), 43–48 (2015) R.A. Watson, A Low-Cost Surgical Application of Additive Fabrication. J. Surg. Educ. 71(1), 14–17 (2014) J. Winder, R. Bibb, Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 63(7), 1006–1015 (2005) R. Winter, J. Moe, and J. Lonstein, Posterior spinal arthrodesis for congenital scoliosis. An analysis of the cases of two hundred and ninety patients, five to nineteen years old. J. Bone Jt. Surg., (1984) Z.-X. Wu et al., Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J. Spinal Disord. Tech. 24(7), 444–450 (2011) G. Wurm, B. Tomancok, P. Pogady, K. Holl, J. Trenkler, Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100(1), 139–145 (2004) W.-H. Xu, J. Liu, M.-L. Li, Z.-Y. Sun, J. Chen, J.-H. Wu, 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph. Ann. Transl. Med. 2(8), 74 (2014) P. Zardini, P. Marino, G. Golia, M. Anselmi, M. Castelli, Ventricular remodeling and infarct expansion. Am. J. Cardiol. 72(19), G98–G106 (Dec. 1993) L. Zhou, L. He, H. Shang, G. Liu, J. Zhao, Y. Liu, Correction of hemifacial microsomia with the help of mirror imaging and a rapid prototyping technique: case report. Br. J. Oral Maxillofac. Surg. 47(6), 486–488 (2009)