3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction

Polymer Chemistry - Tập 8 Số 13 - Trang 2087-2092
Gayan A. Appuhamillage1,2,3, John C. Reagan4,2,3, Sina Khorsandi1,2,3, Joshua R. Davidson1,2,3, Walter Voit5,6,7,2, Ronald A. Smaldone1,2,3
1Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, Texas 75080, USA
2Richardson
3The University of Texas at Dallas
4Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, Texas 75080, USA
5Department of Materials Science and Engineering
6Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, Texas 75080, USA
7Department of Mechanical Engineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, Texas 75080, USA

Tóm tắt

We demonstrate that uniform mechanical properties can be achieved in 3D printed polymer blends by using a dynamic Diels–Alder reaction.

Từ khóa


Tài liệu tham khảo

H. Lipson and M.Kurman, Fabricated: The New World of 3D Printing, Wiley, New York, 2013

Davidson, 2016, ACS Appl. Mater. Interfaces, 8, 16961, 10.1021/acsami.6b05118

Richardson, 2012, Computer-aided Des. Appl. PACE, 2, 33, 10.3722/cadaps.2012.PACE.33-48

Ahmed, 2013, Appl. Mech. Mater., 397–400, 970, 10.4028/www.scientific.net/AMM.397-400.970

Eckel, 2016, Science, 351, 58, 10.1126/science.aad2688

Kirchmajer, 2015, J. Mater. Chem. B, 3, 4105, 10.1039/C5TB00393H

Hart, 2016, ACS Appl. Mater. Interfaces, 8, 3115, 10.1021/acsami.5b10471

Zhang, 2016, Synth. Met., 217, 79, 10.1016/j.synthmet.2016.03.014

Wang, 2002, Polym. Degrad. Stab., 77, 423, 10.1016/S0141-3910(02)00098-8

Shaffer, 2014, Polymer, 55, 5969, 10.1016/j.polymer.2014.07.054

Döpp, 2016, Rev. Sci. Instrum., 87, 073505, 10.1063/1.4958649

Skoog, 2014, J. Mater. Sci. Mater. Med., 25, 845, 10.1007/s10856-013-5107-y

Caulfield, 2007, J. Mater. Process. Technol., 182, 477, 10.1016/j.jmatprotec.2006.09.007

Es-Said, 2000, Mater. Manuf. Processes, 15, 107, 10.1080/10426910008912976

Ahn, 2002, Rapid Prototyping J., 8, 248, 10.1108/13552540210441166

A. I. Isayev , T.Kyu and S. Z. D.Cheng, Liquid-Crystalline Polymer Systems Technological Advances, American Chemical Society, Washington, DC, 1996

Gray IV, 1998, Rapid Prototyping J., 4, 14, 10.1108/13552549810197514

Yeh, 2006, J. Appl. Polym. Sci., 99, 1576, 10.1002/app.22329

Weng, 2016, Mater. Des., 102, 276, 10.1016/j.matdes.2016.04.045

Böhm, 1977, J. Appl. Polym. Sci., 21, 3193, 10.1002/app.1977.070211202

Jin, 2013, Chem. Soc. Rev., 42, 6634, 10.1039/c3cs60044k

Rowan, 2002, Angew. Chem., Int. Ed., 41, 898, 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E

Boutelle, 2011, J. Org. Chem., 76, 7994, 10.1021/jo201606z

Imbesi, 2012, ACS Macro Lett., 1, 473, 10.1021/mz200137m

Berg, 2014, Macromolecules, 47, 3473, 10.1021/ma500244r

Chen, 2002, Science, 295, 1698, 10.1126/science.1065879

Hager, 2010, Adv. Mater., 22, 5424, 10.1002/adma.201003036

White, 2008, MRS Bull., 33, 766, 10.1557/mrs2008.163

Brandt, 2014, Adv. Mater., 26, 5758, 10.1002/adma.201400521

Urban, 2012, Nat. Chem., 4, 80, 10.1038/nchem.1249

Kappe, 1997, Tetrahedron, 53, 14179, 10.1016/S0040-4020(97)00747-3

Zhong, 2015, J. Appl. Polym. Sci., 132, 41944, 10.1002/app.41944

Gandini, 2009, J. Mater. Chem., 19, 8656, 10.1039/b909377j

Signori, 2009, Polym. Degrad. Stab., 94, 74, 10.1016/j.polymdegradstab.2008.10.004