Thiết bị vi dòng chảy in 3D: những yếu tố hỗ trợ và cản trở

Lab on a Chip - Tập 16 Số 11 - Trang 1993-2013
Sidra Waheed1,2,3,4,5, Joan M. Cabot1,2,3,4,5, Niall P. Macdonald1,2,3,4,5, Trevor Lewis1,2,4,6,5, Rosanne M. Guijt2,7,4,8,5, Brett Paull1,2,3,4,5, Michael C. Breadmore1,2,3,4,5
1ARC Centre of Excellence for Electromaterials Science (ACES), School of Physical Sciences, University of Tasmania, Hobart, TAS, Australia
2Australia
3Australian Centre for Research on Separation Sciences (ACROSS), School of Physical Sciences, University of Tasmania, Hobart, TAS, Australia
4Hobart
5University of Tasmania
6School of Physical Sciences
7Australian Centre for Research on Separation Sciences (ACROSS), Pharmacy School of Medicine, University of Tasmania, Hobart, TAS, Australia
8Pharmacy School of Medicine

Tóm tắt

Công nghệ in 3D có khả năng thay đổi đáng kể lĩnh vực vi dòng chảy.

Từ khóa


Tài liệu tham khảo

Becker, 2009, Lab Chip, 9, 2119, 10.1039/b911553f

J. Harrop and R.Gordon, 3D Printing 2015-2025: Technolgies, Markets, Players. Current usage future application and market forecasts IDTechEX, 2014

3D printing market to grow to 16.2 billion USD in 2018, Met. Powder Rep., 2014, vol. 69, p. 42, Available at: http://www.sciencedirect.com/science/article/pii/S0026065714701389

Kim, 2008, BioChip J., 2, 1

Becker, 2002, Talanta, 56, 267, 10.1016/S0039-9140(01)00594-X

Focke, 2010, Lab Chip, 10, 1365, 10.1039/c001195a

Waldbaur, 2011, Anal. Methods, 3, 2681, 10.1039/c1ay05253e

Vaezi, 2013, Int. J. Adv. Des. Manuf. Technol., 67, 1721, 10.1007/s00170-012-4605-2

Gupta, 2016, Anal. Chim. Acta, 910, 84, 10.1016/j.aca.2016.01.012

Au, 2016, Angew. Chem., Int. Ed., 55, 3862, 10.1002/anie.201504382

Singh, 2010, Adv. Mater., 22, 673, 10.1002/adma.200901141

De Gans, 2004, Adv. Mater., 16, 203, 10.1002/adma.200300385

Hon, 2008, CIRP Ann., 57, 601, 10.1016/j.cirp.2008.09.006

C.-T. Chen , ch. Inkjet printing of microcomponents: theory, design, characteristics and applications, in Features of Liquid Crystal Display Materials and Processes, ed. N. Kamanina, InTech, 2011, pp. 43–60

Pfister, 2004, J. Polym. Sci., Part A: Polym. Chem., 42, 624, 10.1002/pola.10807

Sachs, 1992, J. Eng. Ind., 114, 481, 10.1115/1.2900701

Femmer, 2016, Chem. Ing. Tech., 535, 10.1002/cite.201500086

McDonald, 2002, Anal. Chem., 74, 1537, 10.1021/ac010938q

Bonyár, 2010, Protein Eng., 5, 291

Bonyár, 2014, Int. J. Mater. Form., 7, 189, 10.1007/s12289-012-1119-2

Walczak, 2015, J. Micromech. Microeng., 25, 085013, 10.1088/0960-1317/25/8/085013

G. D. Hoople , D. A.Rolfe, K. C.McKinstry, J. R.Noble, D. A.Dornfeld and A. P.Pisano, Comparison of Microscale Rapid Prototyping Techniques for Microfluidic Applications, American Society of Mechanical Engineers, 2014

Takada, 2005, Appl. Phys. Lett., 86, 071122, 10.1063/1.1864249

Lee, 2016, Microfluid. Nanofluid., 20, 1, 10.1007/s10404-015-1676-z

Hwang, 2015, Sens. Actuators, A, 226, 137, 10.1016/j.sna.2015.02.028

O'Connor, 2014, J. Phys.: Conf. Ser., 525, 012009

Lee, 2014, RSC Adv., 4, 32876, 10.1039/C4RA05072J

Gowers, 2015, Anal. Chem., 87, 7763, 10.1021/acs.analchem.5b01353

Paydar, 2014, Sens. Actuators, A, 205, 199, 10.1016/j.sna.2013.11.005

Sochol, 2016, Lab Chip, 16, 668, 10.1039/C5LC01389E

Gross, 2015, Anal. Chem., 87, 6335, 10.1021/acs.analchem.5b01202

Erkal, 2014, Lab Chip, 14, 2023, 10.1039/C4LC00171K

Macdonald, 2016, Lab Chip, 291, 10.1039/C5LC01374G

P. J. Bártolo , Stereolithography: Materials, Processes and Applications, Springer, 2011

Melchels, 2010, Biomaterials, 31, 6121, 10.1016/j.biomaterials.2010.04.050

Huang, 2004, Int. J. Adv. Des. Manuf. Technol., 24, 361, 10.1007/s00170-003-1627-9

Zheng, 2012, Rev. Sci. Instrum., 83, 125001, 10.1063/1.4769050

Pan, 2012, J. Manuf. Sci. Prod., 134, 051011, 10.1115/1.4007465

Billiet, 2012, Biomaterials, 33, 6020, 10.1016/j.biomaterials.2012.04.050

Sun, 2005, Sens. Actuators, A, 121, 113, 10.1016/j.sna.2004.12.011

A. Waldbaur , B.Carneiro, P.Hettich and B. E.Rapp, Computer aided microfluidics (CAMF)–High-resolution projection lithography for the rapid creation of large-scale microfluidic structures, Japan, 2012

Waldbaur, 2012, Small, 8, 1570, 10.1002/smll.201102163

Lu, 1995, Mater. Res. Bull., 30, 1561, 10.1016/0025-5408(95)00118-2

T. H. Pang , 3D Systems Inc, 1994

Comina, 2014, Lab Chip, 14, 424, 10.1039/C3LC50956G

Chan, 2015, Microfluid. Nanofluid., 19, 9, 10.1007/s10404-014-1542-4

Comina, 2014, Lab Chip, 14, 2978, 10.1039/C4LC00394B

Shallan, 2014, Anal. Chem., 86, 3124, 10.1021/ac4041857

Takenaga, 2015, Phys. Status Solidi A, 212, 1347, 10.1002/pssa.201532053

Su, 2015, Anal. Chem., 87, 6945, 10.1021/acs.analchem.5b01599

Rogers, 2015, Biomicrofluidics, 9, 016501, 10.1063/1.4905840

Au, 2015, Lab Chip, 15, 1934, 10.1039/C5LC00126A

Comina, 2015, Micromachines, 6, 437, 10.3390/mi6040437

Comina, 2015, Angew. Chem., Int. Ed., 54, 8708, 10.1002/anie.201503727

Au, 2014, Lab Chip, 14, 1294, 10.1039/C3LC51360B

Patrick, 2015, PLoS One, 10, 1, 10.1371/journal.pone.0143636

Wang, 2013, Chem. Commun., 49, 10064, 10.1039/c3cc45817b

Oskui, 2015, Environ. Sci. Technol. Lett., 3, 1, 10.1021/acs.estlett.5b00249

F. Zhu , N. P.Macdonald, J. M.Cooper and D.Wlodkowic, Additive manufacturing of lab-on-a-chip devices: promises and challenges, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013

Femmer, 2014, Lab Chip, 14, 2610, 10.1039/c4lc00320a

Gong, 2015, RSC Adv., 5, 106621, 10.1039/C5RA23855B

K. C. Bhargava , B.Thompson and N.Malmstadt, Discrete elements for 3D microfluidics, PNAS, California, 2014

Tumbleston, 2015, Science, 347, 1349, 10.1126/science.aaa2397

Kalsoom, 2016, RSC Adv., 6, 38140, 10.1039/C6RA05261D

Choi, 2011, J. Mater. Process. Technol., 211, 318, 10.1016/j.jmatprotec.2010.10.003

Göppert-Mayer, 1931, Ann. Phys., 401, 273, 10.1002/andp.19314010303

Kaiser, 1961, Phys. Rev. Lett., 7, 229, 10.1103/PhysRevLett.7.229

S. Maruo and S.Kawata, Two-photon-absorbed photopolymerization for three-dimensional microfabrication, IEEE, 1997

Xing, 2015, Chem. Soc. Rev., 44, 5031, 10.1039/C5CS00278H

Zhang, 2010, Nano Today, 5, 435, 10.1016/j.nantod.2010.08.007

Farsari, 2009, Nat. Photonics, 3, 450, 10.1038/nphoton.2009.131

Narayan, 2010, Mater. Today, 13, 42, 10.1016/S1369-7021(10)70223-6

Kawata, 2001, Nature, 412, 697, 10.1038/35089130

Xing, 2007, Appl. Phys. Lett., 90, 131106, 10.1063/1.2717532

Cumpston, 1999, Nature, 398, 51, 10.1038/17989

Dong, 2008, Appl. Phys. Lett., 92, 091113, 10.1063/1.2841042

Haske, 2007, Opt. Express, 15, 3426, 10.1364/OE.15.003426

Park, 2006, Appl. Phys. Lett., 89, 173133, 10.1063/1.2363956

Sakellari, 2012, ACS Nano, 6, 2302, 10.1021/nn204454c

Sugioka, 2014, Appl. Phys. Rev., 1, 041303, 10.1063/1.4904320

Kumi, 2010, Lab Chip, 10, 1057, 10.1039/b923377f

Stoneman, 2009, Lab Chip, 9, 819, 10.1039/B816993D

Venkatakrishnan, 2009, Opt. Express, 17, 2756, 10.1364/OE.17.002756

Zhou, 2002, Science, 296, 1106, 10.1126/science.296.5570.1106

Wu, 2009, Lab Chip, 9, 2391, 10.1039/b902159k

Coenjarts, 2004, Chem. Mater., 16, 5556, 10.1021/cm048717z

Wang, 2010, Lab Chip, 10, 1993, 10.1039/c003264f

He, 2012, Lab Chip, 12, 3866, 10.1039/c2lc40401j

Xia, 2010, Adv. Mater., 22, 3204, 10.1002/adma.201000542

Tian, 2010, Lab Chip, 10, 2902, 10.1039/c005277a

Lim, 2011, Lab Chip, 11, 100, 10.1039/C005325M

Xu, 2010, Small, 6, 1762, 10.1002/smll.201000511

Hanada, 2011, Lab Chip, 11, 2109, 10.1039/c1lc20101h

Xu, 2011, Lab Chip, 11, 3347, 10.1039/c1lc20397e

Xu, 2012, Chem. Commun., 48, 1680, 10.1039/C2CC16612G

Xu, 2013, Lab Chip, 13, 1677, 10.1039/c3lc50160d

Sugioka, 2014, Lab Chip, 14, 3447, 10.1039/C4LC00548A

Pham, 1998, Int. J. Mach. Tool Manu., 38, 1257, 10.1016/S0890-6955(97)00137-5

Ringeisen, 2013, MRS Bull., 38, 834, 10.1557/mrs.2013.209

Rutz, 2015, Adv. Mater., 27, 1607, 10.1002/adma.201405076

Novakova-Marcincinova, 2012, Manuf. and Ind. Eng., 11, 24

Chia, 2015, J. Biol. Eng., 9, 4, 10.1186/s13036-015-0001-4

Zhong, 2001, Mater. Sci. Eng., A, 301, 125, 10.1016/S0921-5093(00)01810-4

Ziemian, 2001, Rapid Prototyp. J., 7, 138, 10.1108/13552540110395538

Symes, 2012, Nat. Chem., 4, 349, 10.1038/nchem.1313

Kitson, 2012, Lab Chip, 12, 3267, 10.1039/c2lc40761b

Kitson, 2013, Chem. Sci., 4, 3099, 10.1039/C3SC51253C

Moore, 2011, Microfluid. Nanofluid., 10, 877, 10.1007/s10404-010-0721-1

Chen, 2007, Microfluid. Nanofluid., 4, 427, 10.1007/s10404-007-0196-x

He, 2015, Microfluid. Nanofluid., 19, 447, 10.1007/s10404-015-1571-7

Kadimisetty, 2016, Biosens. Bioelectron., 77, 188, 10.1016/j.bios.2015.09.017

Kise, 2015, J. Micromech. Microeng., 25, 124002, 10.1088/0960-1317/25/12/124002

Bishop, 2015, Anal. Chem., 87, 5437, 10.1021/acs.analchem.5b00903

Chudobova, 2015, Electrophoresis, 36, 457, 10.1002/elps.201400321

Krejcova, 2014, Biosens. Bioelectron., 54, 421, 10.1016/j.bios.2013.10.031

Donvito, 2015, J. Micromech. Microeng., 25, 035013, 10.1088/0960-1317/25/3/035013

Martino, 2014, Lab Chip, 14, 4178, 10.1039/C4LC00992D

Chen, 2014, Analyst, 139, 3219, 10.1039/C3AN02357E

Anderson, 2013, Anal. Chem., 85, 5622, 10.1021/ac4009594

Cabot, 2015, Anal. Chem., 87, 6165, 10.1021/acs.analchem.5b00845

Lee, 2015, Sci. Rep., 5, 7717, 10.1038/srep07717

Kamei, 2015, Biomed. Microdevices, 17, 1, 10.1007/s10544-015-9928-y