Becker, 2009, Lab Chip, 9, 2119, 10.1039/b911553f
J.
Harrop
and R.Gordon, 3D Printing 2015-2025: Technolgies, Markets, Players. Current usage future application and market forecasts IDTechEX, 2014
3D printing market to grow to 16.2 billion USD in 2018, Met. Powder Rep., 2014, vol. 69, p. 42, Available at: http://www.sciencedirect.com/science/article/pii/S0026065714701389
Kim, 2008, BioChip J., 2, 1
Becker, 2002, Talanta, 56, 267, 10.1016/S0039-9140(01)00594-X
Focke, 2010, Lab Chip, 10, 1365, 10.1039/c001195a
Waldbaur, 2011, Anal. Methods, 3, 2681, 10.1039/c1ay05253e
Vaezi, 2013, Int. J. Adv. Des. Manuf. Technol., 67, 1721, 10.1007/s00170-012-4605-2
Gupta, 2016, Anal. Chim. Acta, 910, 84, 10.1016/j.aca.2016.01.012
Au, 2016, Angew. Chem., Int. Ed., 55, 3862, 10.1002/anie.201504382
Singh, 2010, Adv. Mater., 22, 673, 10.1002/adma.200901141
De Gans, 2004, Adv. Mater., 16, 203, 10.1002/adma.200300385
Hon, 2008, CIRP Ann., 57, 601, 10.1016/j.cirp.2008.09.006
C.-T.
Chen
, ch. Inkjet printing of microcomponents: theory, design, characteristics and applications, in Features of Liquid Crystal Display Materials and Processes, ed. N. Kamanina, InTech, 2011, pp. 43–60
Pfister, 2004, J. Polym. Sci., Part A: Polym. Chem., 42, 624, 10.1002/pola.10807
Sachs, 1992, J. Eng. Ind., 114, 481, 10.1115/1.2900701
Femmer, 2016, Chem. Ing. Tech., 535, 10.1002/cite.201500086
McDonald, 2002, Anal. Chem., 74, 1537, 10.1021/ac010938q
Bonyár, 2010, Protein Eng., 5, 291
Bonyár, 2014, Int. J. Mater. Form., 7, 189, 10.1007/s12289-012-1119-2
Walczak, 2015, J. Micromech. Microeng., 25, 085013, 10.1088/0960-1317/25/8/085013
G. D.
Hoople
, D. A.Rolfe, K. C.McKinstry, J. R.Noble, D. A.Dornfeld and A. P.Pisano, Comparison of Microscale Rapid Prototyping Techniques for Microfluidic Applications, American Society of Mechanical Engineers, 2014
Takada, 2005, Appl. Phys. Lett., 86, 071122, 10.1063/1.1864249
Lee, 2016, Microfluid. Nanofluid., 20, 1, 10.1007/s10404-015-1676-z
Hwang, 2015, Sens. Actuators, A, 226, 137, 10.1016/j.sna.2015.02.028
O'Connor, 2014, J. Phys.: Conf. Ser., 525, 012009
Lee, 2014, RSC Adv., 4, 32876, 10.1039/C4RA05072J
Gowers, 2015, Anal. Chem., 87, 7763, 10.1021/acs.analchem.5b01353
Paydar, 2014, Sens. Actuators, A, 205, 199, 10.1016/j.sna.2013.11.005
Sochol, 2016, Lab Chip, 16, 668, 10.1039/C5LC01389E
Gross, 2015, Anal. Chem., 87, 6335, 10.1021/acs.analchem.5b01202
Erkal, 2014, Lab Chip, 14, 2023, 10.1039/C4LC00171K
Macdonald, 2016, Lab Chip, 291, 10.1039/C5LC01374G
P. J.
Bártolo
, Stereolithography: Materials, Processes and Applications, Springer, 2011
Melchels, 2010, Biomaterials, 31, 6121, 10.1016/j.biomaterials.2010.04.050
Huang, 2004, Int. J. Adv. Des. Manuf. Technol., 24, 361, 10.1007/s00170-003-1627-9
Zheng, 2012, Rev. Sci. Instrum., 83, 125001, 10.1063/1.4769050
Pan, 2012, J. Manuf. Sci. Prod., 134, 051011, 10.1115/1.4007465
Billiet, 2012, Biomaterials, 33, 6020, 10.1016/j.biomaterials.2012.04.050
Sun, 2005, Sens. Actuators, A, 121, 113, 10.1016/j.sna.2004.12.011
A.
Waldbaur
, B.Carneiro, P.Hettich and B. E.Rapp, Computer aided microfluidics (CAMF)–High-resolution projection lithography for the rapid creation of large-scale microfluidic structures, Japan, 2012
Waldbaur, 2012, Small, 8, 1570, 10.1002/smll.201102163
Lu, 1995, Mater. Res. Bull., 30, 1561, 10.1016/0025-5408(95)00118-2
T. H.
Pang
, 3D Systems Inc, 1994
Comina, 2014, Lab Chip, 14, 424, 10.1039/C3LC50956G
Chan, 2015, Microfluid. Nanofluid., 19, 9, 10.1007/s10404-014-1542-4
Comina, 2014, Lab Chip, 14, 2978, 10.1039/C4LC00394B
Shallan, 2014, Anal. Chem., 86, 3124, 10.1021/ac4041857
Takenaga, 2015, Phys. Status Solidi A, 212, 1347, 10.1002/pssa.201532053
Su, 2015, Anal. Chem., 87, 6945, 10.1021/acs.analchem.5b01599
Rogers, 2015, Biomicrofluidics, 9, 016501, 10.1063/1.4905840
Au, 2015, Lab Chip, 15, 1934, 10.1039/C5LC00126A
Comina, 2015, Micromachines, 6, 437, 10.3390/mi6040437
Comina, 2015, Angew. Chem., Int. Ed., 54, 8708, 10.1002/anie.201503727
Au, 2014, Lab Chip, 14, 1294, 10.1039/C3LC51360B
Patrick, 2015, PLoS One, 10, 1, 10.1371/journal.pone.0143636
Wang, 2013, Chem. Commun., 49, 10064, 10.1039/c3cc45817b
Oskui, 2015, Environ. Sci. Technol. Lett., 3, 1, 10.1021/acs.estlett.5b00249
F.
Zhu
, N. P.Macdonald, J. M.Cooper and D.Wlodkowic, Additive manufacturing of lab-on-a-chip devices: promises and challenges, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013
Femmer, 2014, Lab Chip, 14, 2610, 10.1039/c4lc00320a
Gong, 2015, RSC Adv., 5, 106621, 10.1039/C5RA23855B
K. C.
Bhargava
, B.Thompson and N.Malmstadt, Discrete elements for 3D microfluidics, PNAS, California, 2014
Tumbleston, 2015, Science, 347, 1349, 10.1126/science.aaa2397
Kalsoom, 2016, RSC Adv., 6, 38140, 10.1039/C6RA05261D
Choi, 2011, J. Mater. Process. Technol., 211, 318, 10.1016/j.jmatprotec.2010.10.003
Göppert-Mayer, 1931, Ann. Phys., 401, 273, 10.1002/andp.19314010303
Kaiser, 1961, Phys. Rev. Lett., 7, 229, 10.1103/PhysRevLett.7.229
S.
Maruo
and S.Kawata, Two-photon-absorbed photopolymerization for three-dimensional microfabrication, IEEE, 1997
Xing, 2015, Chem. Soc. Rev., 44, 5031, 10.1039/C5CS00278H
Zhang, 2010, Nano Today, 5, 435, 10.1016/j.nantod.2010.08.007
Farsari, 2009, Nat. Photonics, 3, 450, 10.1038/nphoton.2009.131
Narayan, 2010, Mater. Today, 13, 42, 10.1016/S1369-7021(10)70223-6
Kawata, 2001, Nature, 412, 697, 10.1038/35089130
Xing, 2007, Appl. Phys. Lett., 90, 131106, 10.1063/1.2717532
Cumpston, 1999, Nature, 398, 51, 10.1038/17989
Dong, 2008, Appl. Phys. Lett., 92, 091113, 10.1063/1.2841042
Haske, 2007, Opt. Express, 15, 3426, 10.1364/OE.15.003426
Park, 2006, Appl. Phys. Lett., 89, 173133, 10.1063/1.2363956
Sakellari, 2012, ACS Nano, 6, 2302, 10.1021/nn204454c
Sugioka, 2014, Appl. Phys. Rev., 1, 041303, 10.1063/1.4904320
Kumi, 2010, Lab Chip, 10, 1057, 10.1039/b923377f
Stoneman, 2009, Lab Chip, 9, 819, 10.1039/B816993D
Venkatakrishnan, 2009, Opt. Express, 17, 2756, 10.1364/OE.17.002756
Zhou, 2002, Science, 296, 1106, 10.1126/science.296.5570.1106
Wu, 2009, Lab Chip, 9, 2391, 10.1039/b902159k
Coenjarts, 2004, Chem. Mater., 16, 5556, 10.1021/cm048717z
Wang, 2010, Lab Chip, 10, 1993, 10.1039/c003264f
He, 2012, Lab Chip, 12, 3866, 10.1039/c2lc40401j
Xia, 2010, Adv. Mater., 22, 3204, 10.1002/adma.201000542
Tian, 2010, Lab Chip, 10, 2902, 10.1039/c005277a
Lim, 2011, Lab Chip, 11, 100, 10.1039/C005325M
Xu, 2010, Small, 6, 1762, 10.1002/smll.201000511
Hanada, 2011, Lab Chip, 11, 2109, 10.1039/c1lc20101h
Xu, 2011, Lab Chip, 11, 3347, 10.1039/c1lc20397e
Xu, 2012, Chem. Commun., 48, 1680, 10.1039/C2CC16612G
Xu, 2013, Lab Chip, 13, 1677, 10.1039/c3lc50160d
Sugioka, 2014, Lab Chip, 14, 3447, 10.1039/C4LC00548A
Pham, 1998, Int. J. Mach. Tool Manu., 38, 1257, 10.1016/S0890-6955(97)00137-5
Ringeisen, 2013, MRS Bull., 38, 834, 10.1557/mrs.2013.209
Rutz, 2015, Adv. Mater., 27, 1607, 10.1002/adma.201405076
Novakova-Marcincinova, 2012, Manuf. and Ind. Eng., 11, 24
Chia, 2015, J. Biol. Eng., 9, 4, 10.1186/s13036-015-0001-4
Zhong, 2001, Mater. Sci. Eng., A, 301, 125, 10.1016/S0921-5093(00)01810-4
Ziemian, 2001, Rapid Prototyp. J., 7, 138, 10.1108/13552540110395538
Symes, 2012, Nat. Chem., 4, 349, 10.1038/nchem.1313
Kitson, 2012, Lab Chip, 12, 3267, 10.1039/c2lc40761b
Kitson, 2013, Chem. Sci., 4, 3099, 10.1039/C3SC51253C
Moore, 2011, Microfluid. Nanofluid., 10, 877, 10.1007/s10404-010-0721-1
Chen, 2007, Microfluid. Nanofluid., 4, 427, 10.1007/s10404-007-0196-x
He, 2015, Microfluid. Nanofluid., 19, 447, 10.1007/s10404-015-1571-7
Kadimisetty, 2016, Biosens. Bioelectron., 77, 188, 10.1016/j.bios.2015.09.017
Kise, 2015, J. Micromech. Microeng., 25, 124002, 10.1088/0960-1317/25/12/124002
Bishop, 2015, Anal. Chem., 87, 5437, 10.1021/acs.analchem.5b00903
Chudobova, 2015, Electrophoresis, 36, 457, 10.1002/elps.201400321
Krejcova, 2014, Biosens. Bioelectron., 54, 421, 10.1016/j.bios.2013.10.031
Donvito, 2015, J. Micromech. Microeng., 25, 035013, 10.1088/0960-1317/25/3/035013
Martino, 2014, Lab Chip, 14, 4178, 10.1039/C4LC00992D
Chen, 2014, Analyst, 139, 3219, 10.1039/C3AN02357E
Anderson, 2013, Anal. Chem., 85, 5622, 10.1021/ac4009594
Cabot, 2015, Anal. Chem., 87, 6165, 10.1021/acs.analchem.5b00845
Lee, 2015, Sci. Rep., 5, 7717, 10.1038/srep07717
Kamei, 2015, Biomed. Microdevices, 17, 1, 10.1007/s10544-015-9928-y