3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF

Desalination - Tập 425 - Trang 12-21 - 2018
Nurshaun Sreedhar1, Navya Thomas1, Oraib Al-Ketan1, Reza Rowshan2, Hector Hernandez1, Rashid K. Abu Al-Rub1, Hassan A. Arafat1
1Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
2Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Tài liệu tham khảo

Radu, 2014, Spacer geometry and particle deposition in spiral wound membrane feed channels, Water Res., 64, 160, 10.1016/j.watres.2014.06.040 Da Costa, 1991, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62, 275, 10.1016/0376-7388(91)80043-6 Da Costa, 1994, Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87, 79, 10.1016/0376-7388(93)E0076-P Baker, 1995, Characterisation of fouling of nanofiltration membranes used to treat surface waters, Environ. Technol., 16, 977, 10.1080/09593331608616335 Vrouwenvelder, 2009, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem, Water Res., 43, 583, 10.1016/j.watres.2008.11.019 Vrouwenvelder, 2009, A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: fact or fiction?, J. Membr. Sci., 326, 36, 10.1016/j.memsci.2008.09.029 Picioreanu, 2009, Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices, J. Membr. Sci., 345, 340, 10.1016/j.memsci.2009.09.024 Bucs, 2014, Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study, Desalination, 343, 26, 10.1016/j.desal.2013.11.007 Dreszer, 2014, Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient, Water Res., 50, 200, 10.1016/j.watres.2013.11.024 Li, 2016, A conceptual design of spacers with hairy structures for membrane processes, J. Membr. Sci., 510, 314, 10.1016/j.memsci.2016.03.021 Lee, 2016, The potential to enhance membrane module design with 3D printing technology, J. Membr. Sci., 499, 480, 10.1016/j.memsci.2015.11.008 Low, 2017, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, J. Membr. Sci., 523, 596, 10.1016/j.memsci.2016.10.006 Siddiqui, 2016, Development and characterization of 3D-printed feed spacers for spiral wound membrane systems, Water Res., 91, 55, 10.1016/j.watres.2015.12.052 Tan, 2016, 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry, Virtual Phys. Prototyp., 11, 151, 10.1080/17452759.2016.1211925 Tan, 2017, Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication, J. Membr. Sci., 537, 283, 10.1016/j.memsci.2017.05.037 Shrivastava, 2008, Predicting the effect of membrane spacers on mass transfer, J. Membr. Sci., 323, 247, 10.1016/j.memsci.2008.05.060 Fritzmann, 2014, Helically microstructured spacers improve mass transfer and fractionation selectivity in ultrafiltration, J. Membr. Sci., 463, 41, 10.1016/j.memsci.2014.03.059 Li, 2005, Novel spacers for mass transfer enhancement in membrane separations, J. Membr. Sci., 253, 1, 10.1016/j.memsci.2004.12.019 Liu, 2013, Static mixing spacers for spiral wound modules, J. Membr. Sci., 442, 140, 10.1016/j.memsci.2013.03.063 Schoen, 1970, Infinite periodic minimal surfaces without self-intersections, Nasa Tech. Note, D-5541, 92 Matsen, 1996, Unifying weak- and strong-segregation block copolymer theories, Macromolecules, 29, 1091, 10.1021/ma951138i Gelbart Michielsen, 2008, Gyroid cuticular structures in butterfly wing scales: biological photonic crystals, J. R. Soc. Interface, 5, 85, 10.1098/rsif.2007.1065 Rajagopalan, 2006, Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds, Med. Image Anal., 10, 693, 10.1016/j.media.2006.06.001 Torquato, 2004, Minimal surfaces and multifunctionality, Proc. R. Soc. A Math. Phys. Eng. Sci., 460, 1849, 10.1098/rspa.2003.1269 Jung, 2005, Fluid permeabilities of triply periodic minimal surfaces, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 72, 10.1103/PhysRevE.72.056319 Ha, 2004 Abueidda, 2015, Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements, Int. J. Mech. Sci., 92, 80, 10.1016/j.ijmecsci.2014.12.004 Abueidda, 2016, Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces, Mech. Mater., 95, 102, 10.1016/j.mechmat.2016.01.004 Abueidda, 2017, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Des., 122, 255, 10.1016/j.matdes.2017.03.018 Al-Ketan, 2016, Mechanical properties of a new type of architected interpenetrating phase composite materials, Adv. Mater. Technol. Femmer, 2015, Estimation of the structure dependent performance of 3-D rapid prototyped membranes, Chem. Eng. J., 273, 438, 10.1016/j.cej.2015.03.029 Femmer, 2015, Print your membrane: rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist, J. Membr. Sci., 478, 12, 10.1016/j.memsci.2014.12.040 xi Dong, 2015, Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes, Desalination, 365, 70, 10.1016/j.desal.2015.02.023 Hausman, 2013, A comparison of silver- and copper-charged polypropylene feed spacers for biofouling control, J. Appl. Polym. Sci., 128, 1706 Michielsen, 2003, Photonic band gaps in materials with triply periodic surfaces and related tubular structures, Phys. Rev. B, 68, 10.1103/PhysRevB.68.115107 Al-Ketan, 2017, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Compos. Struct., 176, 9, 10.1016/j.compstruct.2017.05.026 Suwarno, 2012, The impact of flux and spacers on biofilm development on reverse osmosis membranes, J. Membr. Sci., 405–406, 219, 10.1016/j.memsci.2012.03.012 Farhat, 2013, Boron removal in new generation reverse osmosis (RO) membranes using two-pass RO without pH adjustment, Desalination, 310, 50, 10.1016/j.desal.2012.10.003 Vercellino, 2013, The use of covalently attached organo-selenium to inhibit S. aureus and E. coli biofilms on {RO} membranes and feed spacers, Desalination, 317, 142, 10.1016/j.desal.2013.02.018 Prince, 2014, Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes—a solution to bio-fouling in membrane separation processes, Sci Rep, 4, 10.1038/srep06555 Gu, 2013, Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules, Water Res., 47, 1867, 10.1016/j.watres.2013.01.008 Hausman, 2013, A comparison of silver- and copper-charged polypropylene feed spacers for biofouling control, J. Appl. Polym. Sci., 128, 1706 Li, 2016, A conceptual design of spacers with hairy structures for membrane processes, J. Membr. Sci., 510, 314, 10.1016/j.memsci.2016.03.021 Johnson, 2010, Engineering aspects of reverse osmosis module design, Desalin. Water Treat., 15, 236, 10.5004/dwt.2010.1756 Anscombe, 2010, Direct laser writing, Nat. Photonics, 4, 22, 10.1038/nphoton.2009.250 Günther, 2014, Continuous 3D-printing for additive manufacturing, Rapid Prototyp. J., 20, 320, 10.1108/RPJ-08-2012-0068 Zheng, 2016, Multiscale metallic metamaterials, Nat. Mater., 15, 1100, 10.1038/nmat4694 Tumbleston, 2015, Continuous liquid interface production of 3D objects, Science, 80, 1349, 10.1126/science.aaa2397 Schwinge, 2004, Novel spacer design improves observed flux, J. Membr. Sci., 229, 53, 10.1016/j.memsci.2003.09.015 Balster, 2006, Multi-layer spacer geometries with improved mass transport, J. Membr. Sci., 282, 351, 10.1016/j.memsci.2006.05.039