3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF
Tài liệu tham khảo
Radu, 2014, Spacer geometry and particle deposition in spiral wound membrane feed channels, Water Res., 64, 160, 10.1016/j.watres.2014.06.040
Da Costa, 1991, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62, 275, 10.1016/0376-7388(91)80043-6
Da Costa, 1994, Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87, 79, 10.1016/0376-7388(93)E0076-P
Baker, 1995, Characterisation of fouling of nanofiltration membranes used to treat surface waters, Environ. Technol., 16, 977, 10.1080/09593331608616335
Vrouwenvelder, 2009, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem, Water Res., 43, 583, 10.1016/j.watres.2008.11.019
Vrouwenvelder, 2009, A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: fact or fiction?, J. Membr. Sci., 326, 36, 10.1016/j.memsci.2008.09.029
Picioreanu, 2009, Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices, J. Membr. Sci., 345, 340, 10.1016/j.memsci.2009.09.024
Bucs, 2014, Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study, Desalination, 343, 26, 10.1016/j.desal.2013.11.007
Dreszer, 2014, Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient, Water Res., 50, 200, 10.1016/j.watres.2013.11.024
Li, 2016, A conceptual design of spacers with hairy structures for membrane processes, J. Membr. Sci., 510, 314, 10.1016/j.memsci.2016.03.021
Lee, 2016, The potential to enhance membrane module design with 3D printing technology, J. Membr. Sci., 499, 480, 10.1016/j.memsci.2015.11.008
Low, 2017, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, J. Membr. Sci., 523, 596, 10.1016/j.memsci.2016.10.006
Siddiqui, 2016, Development and characterization of 3D-printed feed spacers for spiral wound membrane systems, Water Res., 91, 55, 10.1016/j.watres.2015.12.052
Tan, 2016, 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry, Virtual Phys. Prototyp., 11, 151, 10.1080/17452759.2016.1211925
Tan, 2017, Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication, J. Membr. Sci., 537, 283, 10.1016/j.memsci.2017.05.037
Shrivastava, 2008, Predicting the effect of membrane spacers on mass transfer, J. Membr. Sci., 323, 247, 10.1016/j.memsci.2008.05.060
Fritzmann, 2014, Helically microstructured spacers improve mass transfer and fractionation selectivity in ultrafiltration, J. Membr. Sci., 463, 41, 10.1016/j.memsci.2014.03.059
Li, 2005, Novel spacers for mass transfer enhancement in membrane separations, J. Membr. Sci., 253, 1, 10.1016/j.memsci.2004.12.019
Liu, 2013, Static mixing spacers for spiral wound modules, J. Membr. Sci., 442, 140, 10.1016/j.memsci.2013.03.063
Schoen, 1970, Infinite periodic minimal surfaces without self-intersections, Nasa Tech. Note, D-5541, 92
Matsen, 1996, Unifying weak- and strong-segregation block copolymer theories, Macromolecules, 29, 1091, 10.1021/ma951138i
Gelbart
Michielsen, 2008, Gyroid cuticular structures in butterfly wing scales: biological photonic crystals, J. R. Soc. Interface, 5, 85, 10.1098/rsif.2007.1065
Rajagopalan, 2006, Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds, Med. Image Anal., 10, 693, 10.1016/j.media.2006.06.001
Torquato, 2004, Minimal surfaces and multifunctionality, Proc. R. Soc. A Math. Phys. Eng. Sci., 460, 1849, 10.1098/rspa.2003.1269
Jung, 2005, Fluid permeabilities of triply periodic minimal surfaces, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 72, 10.1103/PhysRevE.72.056319
Ha, 2004
Abueidda, 2015, Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements, Int. J. Mech. Sci., 92, 80, 10.1016/j.ijmecsci.2014.12.004
Abueidda, 2016, Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces, Mech. Mater., 95, 102, 10.1016/j.mechmat.2016.01.004
Abueidda, 2017, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Des., 122, 255, 10.1016/j.matdes.2017.03.018
Al-Ketan, 2016, Mechanical properties of a new type of architected interpenetrating phase composite materials, Adv. Mater. Technol.
Femmer, 2015, Estimation of the structure dependent performance of 3-D rapid prototyped membranes, Chem. Eng. J., 273, 438, 10.1016/j.cej.2015.03.029
Femmer, 2015, Print your membrane: rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist, J. Membr. Sci., 478, 12, 10.1016/j.memsci.2014.12.040
xi Dong, 2015, Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes, Desalination, 365, 70, 10.1016/j.desal.2015.02.023
Hausman, 2013, A comparison of silver- and copper-charged polypropylene feed spacers for biofouling control, J. Appl. Polym. Sci., 128, 1706
Michielsen, 2003, Photonic band gaps in materials with triply periodic surfaces and related tubular structures, Phys. Rev. B, 68, 10.1103/PhysRevB.68.115107
Al-Ketan, 2017, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Compos. Struct., 176, 9, 10.1016/j.compstruct.2017.05.026
Suwarno, 2012, The impact of flux and spacers on biofilm development on reverse osmosis membranes, J. Membr. Sci., 405–406, 219, 10.1016/j.memsci.2012.03.012
Farhat, 2013, Boron removal in new generation reverse osmosis (RO) membranes using two-pass RO without pH adjustment, Desalination, 310, 50, 10.1016/j.desal.2012.10.003
Vercellino, 2013, The use of covalently attached organo-selenium to inhibit S. aureus and E. coli biofilms on {RO} membranes and feed spacers, Desalination, 317, 142, 10.1016/j.desal.2013.02.018
Prince, 2014, Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes—a solution to bio-fouling in membrane separation processes, Sci Rep, 4, 10.1038/srep06555
Gu, 2013, Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules, Water Res., 47, 1867, 10.1016/j.watres.2013.01.008
Hausman, 2013, A comparison of silver- and copper-charged polypropylene feed spacers for biofouling control, J. Appl. Polym. Sci., 128, 1706
Li, 2016, A conceptual design of spacers with hairy structures for membrane processes, J. Membr. Sci., 510, 314, 10.1016/j.memsci.2016.03.021
Johnson, 2010, Engineering aspects of reverse osmosis module design, Desalin. Water Treat., 15, 236, 10.5004/dwt.2010.1756
Anscombe, 2010, Direct laser writing, Nat. Photonics, 4, 22, 10.1038/nphoton.2009.250
Günther, 2014, Continuous 3D-printing for additive manufacturing, Rapid Prototyp. J., 20, 320, 10.1108/RPJ-08-2012-0068
Zheng, 2016, Multiscale metallic metamaterials, Nat. Mater., 15, 1100, 10.1038/nmat4694
Tumbleston, 2015, Continuous liquid interface production of 3D objects, Science, 80, 1349, 10.1126/science.aaa2397
Schwinge, 2004, Novel spacer design improves observed flux, J. Membr. Sci., 229, 53, 10.1016/j.memsci.2003.09.015
Balster, 2006, Multi-layer spacer geometries with improved mass transport, J. Membr. Sci., 282, 351, 10.1016/j.memsci.2006.05.039