3D printed Au/rGO microlattice host for dendrite-free sodium metal anode

Energy Storage Materials - Tập 55 - Trang 631-641 - 2023
Hui Wang1, Wanlong Bai1, Dezhi Kong1, Tingting Xu1, Zhuangfei Zhang1, Jinhao Zang1, Xinchang Wang1, Sen Zhang1, Yongtao Tian1, Xinjian Li1, Chun-Sing Lee2, Ye Wang1
1Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
2Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China

Tài liệu tham khảo

Li, 2022, 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries, Adv. Energy Mater., 12 Lee, 2019, Sodium metal anodes: Emerging solutions to dendrite growth, Chem. Rev., 119, 5416, 10.1021/acs.chemrev.8b00642 Wang, 2020, Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries, Chem. Soc. Rev., 49, 3783, 10.1039/D0CS00033G Chen, 2022, High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte, Energy Environ. Sci., 15, 3360, 10.1039/D2EE01257J Zheng, 2019, Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions, Energy Storage Mater., 16, 6, 10.1016/j.ensm.2018.04.014 Gao, 2022, The chemical evolution of solid electrolyte interface in sodium metal batteries, Sci. Adv., 8, eabm4606, 10.1126/sciadv.abm4606 Zhu, 2019, Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes, Sci. Adv., 5, eaau6264, 10.1126/sciadv.aau6264 Shi, 2020, 3D flexible, conductive, and recyclable Ti3C2Tx mxene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode, ACS Nano, 14, 8678, 10.1021/acsnano.0c03042 Chen, 2021, Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries, Chem. Eng. J., 404, 10.1016/j.cej.2020.126469 Liu, 2021, Enabling high-performance sodium metal anode via a presodiated alloy-induced interphase, Chem. Eng. J., 417, 10.1016/j.cej.2021.128997 Xiang, 2020, Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy, Nat. Nanotechnol., 15, 883, 10.1038/s41565-020-0749-7 Zhao, 2020, Rational design of layered oxide materials for sodium-ion batteries, Science, 370, 708, 10.1126/science.aay9972 Wang, 2021, N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode, Solid State Ionics, 368, 10.1016/j.ssi.2021.115711 Fan, 2018, High-performance all-solid-state Na-S battery enabled by casting-annealing technology, ACS Nano, 12, 3360, 10.1021/acsnano.7b08856 Huang, 2021, An emerging energy storage system: Advanced Na-Se batteries, ACS Nano, 15, 5876, 10.1021/acsnano.0c10078 Wang, 2018, Long cycle life, low self-discharge sodium-selenium batteries with high selenium loading and suppressed polyselenide shuttling, Adv. Energy Mater., 8 Wu, 2019, Controllable chain-length for covalent sulfur-carbon materials enabling stable and high-capacity sodium storage, Adv. Energy Mater., 9 Zeng, 2015, A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries, Adv. Energy Mater., 5, 10.1002/aenm.201401377 Wang, 2021, Tunable electrocatalytic behavior of sodiated MoS2 active sites toward efficient sulfur redox reactions in room-temperature Na-S batteries, Adv. Mater., 33 Xin, 2014, A high-energy room-temperature sodium-sulfur battery, Adv. Mater., 26, 1261, 10.1002/adma.201304126 Du, 2020, Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries, Chem. Eng. J., 379, 10.1016/j.cej.2019.122359 Wu, 2019, Non-flammable electrolyte for dendrite-free sodium-sulfur battery, Energy Storage Mater., 23, 8, 10.1016/j.ensm.2019.05.045 Fan, 2016, Covalent sulfur for advanced room temperature sodium-sulfur batteries, Nano Energy, 28, 304, 10.1016/j.nanoen.2016.08.056 Xu, 2018, A room-temperature sodium-sulfur battery with high capacity and stable cycling performance, Nat. Commun., 9, 3870, 10.1038/s41467-018-06443-3 Khajehbashi, 2018, High-Performance Na-O2 batteries enabled by oriented NaO2 nanowires as discharge products, Nano Lett., 18, 3934, 10.1021/acs.nanolett.8b01315 Li, 2020, Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries, Chem. Eng. J., 387, 10.1016/j.cej.2020.124059 Yang, 2020, Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage, Adv. Energy Mater., 10 Zhou, 2020, High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries, Chem, 6, 221, 10.1016/j.chempr.2019.10.021 Marbella, 2018, Sodiation and desodiation via helical phosphorus intermediates in high-capacity anodes for sodium-ion batteries, J. Am. Chem. Soc., 140, 7994, 10.1021/jacs.8b04183 Wang, 2018, A dual-stimuli-responsive sodium-bromine battery with ultrahigh energy density, Adv. Mater., 30 Wang, 2019, A novel aqueous Li+ (or Na+)/Br- hybrid-ion battery with super high areal capacity and energy density, J. Mater. Chem. A, 7, 13050, 10.1039/C9TA03212F Wang, 2019, Electrochemically stable sodium metal-tellurium/carbon nanorods batteries, Adv. Energy Mater., 9 Zhang, 2018, Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges, Adv. Energy Mater., 8, 10.1002/aenm.201801361 Chen, 2020, Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries, Chem, 6, 2242, 10.1016/j.chempr.2020.06.036 Miao, 2020, AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte, Energy Storage Mater., 30, 170, 10.1016/j.ensm.2020.05.011 Luo, 2017, Ultrathin surface coating enables the stable sodium metal anode, Adv. Energy Mater., 7, 10.1002/aenm.201601526 Zhao, 2017, Superior stable and long life sodium metal anodes achieved by atomic layer deposition, Adv. Mater., 29 Zhu, 2020, Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer, Angew. Chem. Int. Ed., 59, 6596, 10.1002/anie.201916716 Jiang, 2022, Artificial heterogeneous interphase layer with boosted ion affinity and diffusion for Na/K-metal batteries, Adv. Mater., 34, 10.1002/adma.202109439 Chi, 2018, 3D flexible carbon felt host for highly stable sodium metal anodes, Adv. Energy Mater., 8, 10.1002/aenm.201702764 Wang, 2017, Processable and moldable sodium-metal anodes, Angew. Chem. Int. Ed., 56, 11921, 10.1002/anie.201703937 Ma, 2020, Advanced carbon nanostructures for future high performance sodium metal anodes, Energy Storage Mater., 25, 811, 10.1016/j.ensm.2019.09.007 Huang, 2022, Hierarchical nanostructure of three-dimensional Au/carbon nanotube-graphene foam for high performance lithium metal anode, Solid State Ionics, 380, 10.1016/j.ssi.2022.115941 Wang, 2022, Fabricating Na/In/C composite anode with natrophilic Na-In alloy enables superior Na ion deposition in the EC/PC electrolyte, Nano-Micro Lett., 14, 23, 10.1007/s40820-021-00756-7 Lei, 2019, Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery, Nat. Commun., 10, 4244, 10.1038/s41467-019-11960-w Liu, 2017, Porous Al current collector for dendrite-free Na metal anodes, Nano Lett., 17, 5862, 10.1021/acs.nanolett.7b03185 Sun, 2018, Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries, Adv. Mater., 30, 10.1002/adma.201801334 Li, 2021, Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure, Adv. Energy Mater., 11 Wang, 2021, Sodiophilic Au/reduced-graphene-oxide for dendrite free sodium metal anode, J. Power Sources, 507, 10.1016/j.jpowsour.2021.230294 Huang, 2022, Three-dimensional Au/carbon nanotube-graphene foam hybrid nanostructure for dendrite free sodium metal anode with long cycle stability, J. Mater. Sci. Technol., 118, 199, 10.1016/j.jmst.2022.01.003 Wang, 2022, 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity, ACS Nano, 16, 9105, 10.1021/acsnano.2c01186 Hummers, 1958, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495 Hutter, 2014, CP2K: atomistic simulations of condensed matter systems, WIREs. Comput. Mol. Sci., 4, 15, 10.1002/wcms.1159 Tang, 2019, Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase, Adv. Mater., 31, 10.1002/adma.201807495 Yan, 2022, Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications, Mater. Today, 54, 110, 10.1016/j.mattod.2022.03.014 Wu, 2020, Sodiophilically graded gold coating on carbon skeletons for highly stable sodium metal anodes, Small, 16 Guo, 2020, Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect, Nano Lett., 20, 7680, 10.1021/acs.nanolett.0c03206 Wang, 2021, High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells, Nat. Commun., 12, 6536, 10.1038/s41467-021-26859-8 Cao, 2007, A novel carbon-coated LiCoO2 as cathode material for lithium ion battery, Electrochem. Commun., 9, 1228, 10.1016/j.elecom.2007.01.017