3D numerical modelling of turbulent biogas combustion in a newly generated 10 KW burner
Tài liệu tham khảo
Dirkse EHM, Biogas Upgrading Using the DMT TS-PWS® Technology, Report, Page 2–12, DMT Environmental Technology.
Adouane, 2010, Fuel-NOx emissions reduction during the combustion of LCV gas in an air staged Winnox-TUD combustor, Appl. Therm. Eng., 30, 1034, 10.1016/j.applthermaleng.2010.01.019
Bhoi, 2009, Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner, Biomass Bioenergy, 33, 469, 10.1016/j.biombioe.2008.08.002
Hosseini, 2014, Numerical investigation of biogas flameless combustion, Energy Convers. Manag., 81, 41, 10.1016/j.enconman.2014.02.006
Huynh, 2013, Combustion and NOx emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam, Fuel, 107, 457, 10.1016/j.fuel.2012.12.016
Leung, 2008, The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream, Int. J. Hydrogen Energy, 33, 3856, 10.1016/j.ijhydene.2008.04.030
İlbaş, 2014, Modelling of combustion performances and emission characteristics of coal gases in a model gas turbine combustor, Int. J. Energy Res., 38, 1171, 10.1002/er.3135
Sethuraman, 2011, Producer gas composition and NOx emissions from a pilot-scale biomass gasification and combustion system using feedstock with controlled nitrogen content, Energy&Fuels, 25, 813
Somehsaraei, 2014, Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model, Appl. Therm. Eng., 66, 181, 10.1016/j.applthermaleng.2014.02.010
Chen, 2011, Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition, Int. J. Hydrogen Energy, 36, 15403, 10.1016/j.ijhydene.2011.09.002
Nikpey, 2014, Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas, Appl. Energy, 117, 30, 10.1016/j.apenergy.2013.11.074
Selim, 2012, Effect of CO2 and N2 concentration in acid gas stream on H2S combustion, Appl. Energy, 98, 53, 10.1016/j.apenergy.2012.02.072
Mordaunt, 2014, Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion, Fuel, 124, 258, 10.1016/j.fuel.2014.01.097
Hosseini, 2014, Development of biogas combustion in combined heat and power generation, Renew. Sustain. Energy Rev., 40, 868, 10.1016/j.rser.2014.07.204
Lafay, 2007, Experimental study of biogas combustion using a gas turbine configuration, Exp. Fluids, 43, 395, 10.1007/s00348-007-0302-6
Jahangirian, 2009, Thermal and chemical structure of biogas counterflow diffusion flames, Energy & Fuels, 23, 5312, 10.1021/ef9002044
Hosseini, 2015, Effects of burner configuration on the characteristics of biogas flameless combustion, Combust. Sci. Technol., 187, 1240, 10.1080/00102202.2015.1031224
Feyz, 2015, Effect of recess length on the flame parameters and combustion performance of a low swirl burner, Appl. Therm. Eng., 89, 609, 10.1016/j.applthermaleng.2015.06.007
Saqr, 2010, Effect of free stream turbulence on NOx and soot formation in turbulent diffusion CH4-air flames, Int. J. Heat Mass Transf, 37, 611, 10.1016/j.icheatmasstransfer.2010.02.008
İlbaş, 2015, A numerical study on combustion behaviours of hydrogen-enriched low calorific value coal gases, Int. J. Hydrogen Energy, 40, 15218, 10.1016/j.ijhydene.2015.04.141
Versteeg, 1995
Ilbas, 1997
Ilbas, 2005, The effect of thermal radiation and radiation models on hydrogen–hydrocarbon combustion modelling, Int. J. Hydrogen Energy, 30, 1113, 10.1016/j.ijhydene.2004.10.009
İ. Yılmaz, 2013, Effect of swirl number on combustion characteristics in a natural gas diffusion flame, J. Energy Resour. Technol., 135, 1, 10.1115/1.4024222
Fluent Incorporated, 2011