3D micro-mapping: Towards assessing the quality of crowdsourcing to support 3D point cloud analysis

Benjamin Herfort1, Bernhard Höfle1, Carolin Klonner1
1GIScience Research Group, Department of Geography, Heidelberg University, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

Tài liệu tham khảo

Albuquerque, 2016, The tasks of the crowd: a typology of tasks in geographic information crowdsourcing and a case study in humanitarian mapping, Remote Sens., 8, 859, 10.3390/rs8100859 Arcanjo, 2016, Methods for evaluating volunteers’ contributions in a deforestation detection citizen science project, Futur. Gener. Comput. Syst., 56, 550, 10.1016/j.future.2015.07.005 Barrington, 2011, Crowdsourcing earthquake damage assessment using remote sensing imagery, Ann. Geophys., 54, 680 Basheer, 2000, Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Methods, 43, 3, 10.1016/S0167-7012(00)00201-3 Bremer, 2012, Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event, Geomorphology, 138, 49, 10.1016/j.geomorph.2011.08.024 Deng, 2013, Fine-grained crowdsourcing for fine-grained recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580, 10.1109/CVPR.2013.81 Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., Frenkel, A., 2011. On the segmentation of 3D LIDAR point clouds. 2011 IEEE Int. Conf. Robot. Autom. 2798–2805. http://doi.org/10.1109/ICRA.2011.5979818. Fleiss, J.L., 1971. Measuring nominal scale agreement among many raters. Psychol. Bull. http://doi.org/10.1037/h0031619. Gastwirth, 1972, The estimation of the Lorenz curve and Gini index, Rev. Econ. Stat., 54, 306, 10.2307/1937992 Goetz, M., Zipf, A., 2013. The evolution of geo-crowdsourcing: bringing volunteered geographic information to the third dimension. In: Crowdsourcing Geographic Knowledge. Springer, Netherlands, Dordrecht, pp. 139–159. http://doi.org/10.1007/978-94-007-4587-2_9. Golovinskiy, A., Kim, V.G., Funkhouser, T., 2009. Shape-based recognition of 3D point clouds in urban environments. Comput. Vision, 2009 IEEE 12th Int. Conf. 2154–2161. http://doi.org/10.1109/ICCV.2009.5459471. Hara, K., Sun, J., Moore, R., Jacobs, D., Froehlich, J., 2014. Tohme. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology – UIST ’14. ACM Press, New York, New York, USA, pp. 189–204. http://doi.org/10.1145/2642918.2647403. Herfort, B., 2017. 3D-MAPP Vegetation Project [WWW Document]. URL <https://gitlab.gistools.geog.uni-heidelberg.de/giscience/3D-MAPP/3D_Vegetation> (accessed 7.11.17). Herfort, B., Eckle, M., de Albuquerque, J.P., 2016. Being specific about geographic information crowdsourcing: a typology and analysis of the Missing Maps project in South Kivu. In: Proceedings of the ISCRAM 2016 Conference – Rio de Janeiro, Brazil, May 2016. Höfle, 2013, GIS-based detection of gullies in Terrestrial LiDAR data of the Cerro Llamoca Peatland (Peru), Remote Sens., 5, 5851, 10.3390/rs5115851 Höfle, 2012, Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data, ISPRS J. Photogramm. Remote Sens., 67, 134, 10.1016/j.isprsjprs.2011.12.003 Höfle, 2011, Topographic airborne LiDAR in geomorphology: a technological perspective, Zeitschrift für Geomorphol. Suppl., 55, 1, 10.1127/0372-8854/2011/0055S2-0043 Hohenthal, 2011, Laser scanning applications in fluvial studies, Prog. Phys. Geogr., 35, 782, 10.1177/0309133311414605 Kerle, 2013, Collaborative damage mapping for emergency response: the role of cognitive systems engineering, Nat. Hazards Earth Syst. Sci., 13, 97, 10.5194/nhess-13-97-2013 Koenig, 2016, Full-waveform airborne laser scanning in vegetation studies – a review of point cloud and waveform features for tree species classification, Forests, 7, 1, 10.3390/f7090198 Koma, Z., Koenig, K., Höfle, B., 2016. Urban tree classification using full-waveform airborne laser scanning. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III-3, 185–192. http://doi.org/10.5194/isprsannals-III-3-185-2016. Lee, 2012, Components of spatial thinking: evidence from a spatial thinking ability test, J. Geog., 111, 15, 10.1080/00221341.2011.583262 Levinson, 2011, Towards fully autonomous driving: systems and algorithms, IEEE Intell. Veh. Sympos. Proc., 163–168 Maturana, 2015, VoxNet: a 3D convolutional neural network for real-time object recognition, IROS, 922–928 Morsdorf, 2004, LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management, Remote Sens. Environ., 92, 353, 10.1016/j.rse.2004.05.013 Niemeyer, J., Rottensteiner, F., Soergel, U., 2012. Conditional random fields for LiDAR point cloud classification in complex urban areas. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. I-3, 263–268. http://doi.org/10.5194/isprsannals-I-3-263-2012. Popescu, 2008, A voxel-based lidar method for estimating crown base height for deciduous and pine trees, Remote Sens. Environ., 112, 767, 10.1016/j.rse.2007.06.011 Russakovsky, 2015, ImageNet large scale visual recognition challenge, Int. J. Comput. Vis., 115, 211, 10.1007/s11263-015-0816-y Scifabric, 2017. PyBossa Framework [WWW Document]. URL <http://pybossa.com/> (accessed 7.11.17). See, 2013, Mapping cropland in Ethiopia using crowdsourcing, Int. J. Geosci., 4, 6, 10.4236/ijg.2013.46A1002 Three.js Javascript Library [WWW Document], 2017. URL <https://threejs.org/> (accessed 7.11.17). von Ahn, L., Liu, R., Blum, M., 2006. Peekaboom: a game for locating objects in images. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. – CHI ’06 55. http://doi.org/10.1145/1124772.1124782. Westrope, 2014, Groundtruthing OpenStreetMap building damage assessment, Procedia Eng., 78, 29, 10.1016/j.proeng.2014.07.035 Yu, 2014, Assessment of low density full-waveform airborne laser scanning for individual tree detection and tree species classification, Forests, 5, 1011, 10.3390/f5051011