Mã hóa khối không danh sách 3D cho các cảm biến ảnh siêu phổ hạn chế tài nguyên

Bajpai, Shrish1
1Department of Electronics and Communication Engineering, Faculty of Engineering and Information Technology, Integral University, Lucknow, India

Tóm tắt

Hình ảnh siêu phổ cung cấp nội dung thông tin quang phổ phong phú, tạo điều kiện cho nhiều ứng dụng khác nhau. Với sự phát triển nhanh chóng của độ phân giải không gian và quang phổ của các thiết bị quang học, kích thước dữ liệu hình ảnh đã tăng lên nhiều lần. Vì vậy, cần một thuật toán nén có độ phức tạp mã hóa thấp, yêu cầu bộ nhớ mã hóa thấp và hiệu quả mã hóa cao. Trong những năm gần đây, nhiều thuật toán mã hóa đã được đề xuất. Các thuật toán nén hình ảnh siêu phổ dựa trên biến đổi wavelet với phân vùng tập hợp có hiệu suất mã hóa vượt trội. Những thuật toán này sử dụng danh sách liên kết hoặc bảng trạng thái để theo dõi sự quan trọng/vô nghĩa của các tập hợp/ hệ số được phân vùng. Thuật toán được đề xuất sử dụng thuộc tính phân cấp tháp của biến đổi wavelet. Các điểm đánh dấu được sử dụng để theo dõi sự quan trọng/vô nghĩa của cấp độ tháp. Một cấp độ tháp đơn có nhiều tập hợp. Một cấp độ tháp không quan trọng có nhiều tập hợp được đại diện bằng một bit trong thuật toán nén được đề xuất, trong khi một tập hợp không quan trọng trong khối 3D-SPECK và 3D-LSK được đại diện bằng một bit. Nhờ đó, yêu cầu về bit trong thuật toán được đề xuất thấp hơn so với các thuật toán nén biến đổi wavelet khác ở các mặt phẳng bit cao. Kết quả mô phỏng cho thấy rằng thuật toán nén được đề xuất có hiệu quả mã hóa cao với độ phức tạp mã hóa rất thấp và yêu cầu bộ nhớ mã hóa vừa phải. Độ phức tạp mã hóa giảm giúp cải thiện hiệu suất của cảm biến hình ảnh và giảm mức tiêu thụ điện năng. Do đó, thuật toán nén được đề xuất có tiềm năng lớn trong các hệ thống hình ảnh siêu phổ trên tàu hạn chế tài nguyên.

Từ khóa

#ảnh siêu phổ #nén hình ảnh #biến đổi wavelet #mã hóa #cảm biến ảnh

Tài liệu tham khảo

citation_journal_title=LWT.; citation_title=Classification of pulse flours using near-infrared hyperspectral imaging; citation_author=C Sivakumar, MM Chaudhry, J Paliwal; citation_volume=15; citation_issue=154; citation_publication_date=2022; citation_pages=112799; citation_doi=10.1016/j.lwt.2021.112799; citation_id=CR1 citation_journal_title=IEEE Sens. J.; citation_title=Hyperspectral imaging based corrosion detection in nuclear packages; citation_author=J Zabalza, P Murray, S Bennett, A Campbell, S Marshall, J Ren, Y Yan, R Bernard, S Hepworth, S Malone, N Cockbain; citation_volume=23; citation_issue=1; citation_publication_date=2023; citation_pages=25607-25617; citation_doi=10.1109/JSEN.2023.3312938; citation_id=CR2 citation_journal_title=Precis. Agric.; citation_title=Drone remote sensing of wheat N using hyperspectral sensor and machine learning; citation_author=RN Sahoo, RG Rejith, S Gakhar, R Ranjan, MC Meena, A Dey, J Mukherjee, R Dhakar, A Meena, A Daas, S Babu; citation_publication_date=2023; citation_doi=10.1007/s11119-023-10089-7; citation_id=CR3 Sarinova, A., Lisnevskyi, R., Biloshchytskyi, A., and Akizhanova, A.: The Lossless Compression Algorithm of Hyperspectral Aerospace Images with Correlation and Bands Grouping. 2022 International Conference on Smart Information Systems and Technologies (SIST). IEEE, pp. 1-5 (2022). https://doi.org/10.1109/SIST54437.2022.9945821 . citation_journal_title=BioChip J.; citation_title=Hyperspectral imaging for clinical applications; citation_author=J Yoon; citation_volume=16; citation_issue=1; citation_publication_date=2022; citation_pages=1-12; citation_doi=10.1007/s13206-021-00041-0; citation_id=CR5 Shinde, S.R., Bhavsar, K., Kimbahune, S., Khandelwal, S., Ghose, A., & Pal, A. Detection of Counterfeit Medicines using Hyperspectral Sensing. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp. 6155–6158, (2020). https://doi.org/10.1109/EMBC44109.2020.9176419 . citation_journal_title=Hyperspect. Imaging Appl.; citation_title=Hyperspectral imaging analysis of corrosion products on metals in the UV range; citation_author=A Keane, P Murray, J Zabalza, A Buono, N Cockbain, R Bernard; citation_volume=II; citation_issue=12338; citation_publication_date=2023; citation_pages=44-53; citation_doi=10.1117/12.2647429; citation_id=CR7 citation_journal_title=Sensors.; citation_title=Analysis of hyperspectral data to develop an approach for document images; citation_author=Z Zaman, SB Ahmed, MI Malik; citation_volume=23; citation_issue=15; citation_publication_date=2023; citation_pages=6845; citation_doi=10.3390/s23156845; citation_id=CR8 citation_journal_title=J. Agric. Food Res.; citation_title=Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage; citation_author=NA Aviara, JT Liberty, OS Olatunbosun, HA Shoyombo, SK Oyeniyi; citation_volume=8; citation_publication_date=2022; citation_doi=10.1016/j.jafr.2022.100288; citation_id=CR9 citation_journal_title=Earth Sci. Inform.; citation_title=Performance evaluation of dimensionality reduction techniques on hyperspectral data for mineral exploration; citation_author=C Deepa, A Shetty, AV Narasimhadhan; citation_volume=16; citation_issue=1; citation_publication_date=2023; citation_pages=25-36; citation_doi=10.1007/s12145-023-00956-2; citation_id=CR10 Nisha, A., and Anitha, A.: Current Advances in Hyperspectral Remote Sensing in Urban Planning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, pp. 94–98, (2022). https://doi.org/10.1109/ICICICT54557.2022.9917771 . citation_journal_title=Climate Change Impacts Nat. Resour. Ecosyst. Agric. Syst.; citation_title=Application of hyperspectral remote sensing role in precision farming and sustainable agriculture under climate change: A review; citation_author=CB Pande, KN Moharir; citation_volume=14; citation_publication_date=2023; citation_pages=503-520; citation_doi=10.1007/978-3-031-19059-9_21; citation_id=CR12 citation_journal_title=Environ. Sci. Pollut. Res.; citation_title=Dimensionality reduction strategies for land use land cover classification based on airborne hyperspectral imagery: a survey; citation_author=MA Moharram, DM Sundaram; citation_volume=30; citation_issue=3; citation_publication_date=2023; citation_pages=5580-5602; citation_doi=10.1007/s11356-022-24202-2; citation_id=CR13 citation_journal_title=Remote Sens.; citation_title=The potential of monitoring carbon dioxide emission in a geostationary view with the GIIRS meteorological hyperspectral infrared sounder; citation_author=Q Zhang, W Smith, M Shao; citation_volume=15; citation_issue=4; citation_publication_date=2023; citation_pages=886; citation_doi=10.3390/rs15040886; citation_id=CR14 Jun, S., Choi, W., Kim, D., Park, H., Kyeon, D., Lee, K., Jeon, Y.J., Lee, C., Kim, K., Ha, J. and Ryu, S.: Semiconductor Device Metrology for Detecting Defective Chip Due to High-Aspect Ratio-Based Structures using Hyperspectral Imaging and Deep Learning. Metrology, Inspection, and Process Control XXXVII. Vol. 12496. SPIE (2023). https://doi.org/10.1117/12.2657062 . citation_journal_title=Remote Sens.; citation_title=Autonomous satellite wildfire detection using hyperspectral imagery and neural networks: a case study on Australian wildfire; citation_author=K Thangavel, D Spiller, R Sabatini, S Amici, ST Sasidharan, H Fayek, P Marzocca; citation_volume=15; citation_issue=3; citation_publication_date=2023; citation_pages=720; citation_doi=10.3390/rs15030720; citation_id=CR16 citation_journal_title=J. Indian Soc. Remote Sens.; citation_title=Identification of water and nitrogen stress indicative spectral bands using hyperspectral remote sensing in maize during post-monsoon season; citation_author=BB Naik, HR Naveen, G Sreenivas, KK Choudary, D Devkumar, J Adinarayana; citation_volume=48; citation_publication_date=2020; citation_pages=1787-1795; citation_doi=10.1007/s12524-020-01200-w; citation_id=CR17 citation_journal_title=IEEE Geosci. Remote Sens. Mag.; citation_title=Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques; citation_author=M Shimoni, R Haelterman, C Perneel; citation_volume=7; citation_issue=2; citation_publication_date=2019; citation_pages=101-117; citation_doi=10.1109/MGRS.2019.2902525; citation_id=CR18 Bajpai, S., Singh, H.V., Kidwai, N.R.: Feature Extraction & Classification of Hyperspectral Images Using Singular Spectrum Analysis & Multinomial Logistic Regression Classifiers." 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, pp. 97–100 (2017). https://doi.org/10.1109/MSPCT.2017.8363982 . Chandra, H., and Bajpai, S.: Listless Block Cube Tree Coding For Low Resource Hyperspectral Image Compression Sensors. 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 1–5. (2022) https://doi.org/10.1109/IMPACT55510.2022.10029076 . citation_journal_title=Microprocess. Microsyst.; citation_title=Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images; citation_author=M Ramamurthy, YH Robinson, S Vimal, A Suresh; citation_volume=79; citation_publication_date=2020; citation_doi=10.1016/j.micpro.2020.103280; citation_id=CR21 citation_journal_title=Geosci. Remote Sens. Lett.; citation_title=Singular spectrum analysis for effective feature extraction in hyperspectral imaging.; citation_author=J Zabalza, J Ren, Z Wang, S Marshall, J Wang; citation_volume=11; citation_issue=11; citation_publication_date=2014; citation_pages=1886-1890; citation_doi=10.1109/LGRS.2014.2312754; citation_id=CR22 citation_journal_title=Multimed. Tools Appl.; citation_title=Hyperspectral imaging and target detection algorithms: a review; citation_author=KA Sneha; citation_volume=81; citation_issue=30; citation_publication_date=2022; citation_pages=44141-44206; citation_doi=10.1007/s11042-022-13235-x; citation_id=CR23 citation_journal_title=IET Image Proc.; citation_title=Band selection of hyperspectral image by sparse manifold clustering; citation_author=S Das, S Bhattacharya, A Routray, A Kani Deb; citation_volume=13; citation_issue=10; citation_publication_date=2019; citation_pages=1625-1635; citation_doi=10.1049/iet-ipr.2018.5423; citation_id=CR24 citation_journal_title=Remote Sens.; citation_title=Hyperspectral image denoising via adversarial learning; citation_author=J Zhang, Z Cai, F Chen, D Zeng; citation_volume=14; citation_issue=8; citation_publication_date=2022; citation_pages=1790; citation_doi=10.3390/rs14081790; citation_id=CR25 citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Multiscale diff-changed feature fusion network for hyperspectral image change detection; citation_author=F Luo, T Zhou, J Liu, T Guo, X Gong, J Ren; citation_volume=61; citation_publication_date=2023; citation_pages=1-13; citation_doi=10.1109/TGRS.2023.3241097; citation_id=CR26 citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Dimensionality reduction and classification of hyperspectral image via multistructure unified discriminative embedding; citation_author=F Luo, Z Zou, J Liu, Z Lin; citation_volume=60; citation_publication_date=2021; citation_pages=1-16; citation_doi=10.1109/TGRS.2021.3128764; citation_id=CR27 citation_journal_title=IETE Tech. Rev.; citation_title=PCA-based feature reduction for hyperspectral remote sensing image classification; citation_author=MP Uddin, MA Mamun, MA Hossain; citation_volume=38; citation_issue=4; citation_publication_date=2021; citation_pages=377-396; citation_doi=10.1080/02564602.2020.1740615; citation_id=CR28 citation_journal_title=Multimed. Tools Appl.; citation_title=Hyperspectral image segmentation: a comprehensive survey; citation_author=R Grewal, SS Kasana, G Kasana; citation_volume=82; citation_issue=14; citation_publication_date=2023; citation_pages=20819-20872; citation_doi=10.1007/s11042-022-13959-w; citation_id=CR29 citation_journal_title=J. Appl. Remote. Sens.; citation_title=Unmixing aware compression of hyperspectral image by rank aware orthogonal parallel factorization decomposition; citation_author=S Das, S Ghosal; citation_volume=17; citation_issue=4; citation_publication_date=2023; citation_pages=046509-046509; citation_doi=10.1117/1.JRS.17.046509; citation_id=CR30 citation_journal_title=J. Indian Soc. Remote Sens.; citation_title=Comparative analysis and implication of Hyperion hyperspectral and landsat-8 multispectral dataset in land classification; citation_author=N Dahiya, S Singh, S Gupta; citation_volume=51; citation_publication_date=2023; citation_pages=2201-2213; citation_doi=10.1007/s12524-023-01760-7; citation_id=CR31 citation_journal_title=J. Elect. Comput. Eng.; citation_title=Curvelet transform based compression algorithm for low resource hyperspectral image sensors; citation_author=S Bajpai, D Sharma, M Alam, VS Chandel, AK Pandey, SL Tripathi; citation_volume=2023; citation_publication_date=2023; citation_pages=1-18; citation_doi=10.1155/2023/8961271; citation_id=CR32 citation_journal_title=Multimed. Tools Appl.; citation_title=Fractional wavelet filter based low memory coding for hyperspectral image sensors; citation_author=S Bajpai, NR Kidwai; citation_publication_date=2023; citation_doi=10.1007/s11042-023-16528-x; citation_id=CR33 citation_journal_title=IETE Tech. Rev.; citation_title=Success journey of coherent PM-QPSK technique with its variants: a survey; citation_author=D Sharma, YK Prajapati, R Tripathi; citation_volume=37; citation_issue=1; citation_publication_date=2020; citation_pages=36-55; citation_doi=10.1080/02564602.2018.1557569; citation_id=CR34 citation_journal_title=Comput. Sci. Rev.; citation_title=Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges; citation_author=G Jaiswal, R Rani, H Mangotra, A Sharma; citation_volume=50; citation_publication_date=2023; citation_doi=10.1016/j.cosrev.2023.100584; citation_id=CR35 citation_journal_title=The Vis. Comput.; citation_title=Compression of multi-temporal hyperspectral images based on RLS filter; citation_author=Y Dua, RS Singh, V Kumar; citation_volume=38; citation_issue=1; citation_publication_date=2022; citation_pages=65-75; citation_doi=10.1007/s00371-020-02000-6; citation_id=CR36 citation_journal_title=J. Intell. Fuzzy Syst.; citation_title=3D-Memory efficient listless set partitioning in hierarchical trees for hyperspectral image sensors.; citation_author=H Chandra, S Bajpai, M Alam, VS Chandel, AK Pandey, D Pandey; citation_volume=45; citation_issue=6; citation_publication_date=2023; citation_pages=11163-11187; citation_doi=10.3233/JIFS-231684; citation_id=CR37 citation_journal_title=Multimed. Tools Appl.; citation_title=Low complexity image coding technique for hyperspectral image sensors; citation_author=S Bajpai; citation_volume=82; citation_issue=20; citation_publication_date=2023; citation_pages=31233-31258; citation_doi=10.1007/s11042-023-14738-x; citation_id=CR38 citation_journal_title=Opt. Eng.; citation_title=Comprehensive review of hyperspectral image compression algorithms; citation_author=Y Dua, V Kumar, RS Singh; citation_volume=59; citation_issue=9; citation_publication_date=2020; citation_pages=090902; citation_doi=10.1117/1.OE.59.9.090902; citation_id=CR39 citation_journal_title=Wireless Pers. Commun.; citation_title=Low complexity and low memory compression algorithm for hyperspectral image sensors; citation_author=S Bajpai; citation_volume=131; citation_issue=2; citation_publication_date=2023; citation_pages=805-833; citation_doi=10.1007/s11277-023-10455-8; citation_id=CR40 citation_journal_title=IEEE Sens. J.; citation_title=ZM-SPECK: A fast and memoryless image coder for multimedia sensor networks; citation_author=NR Kidwai, E Khan, M Reisslein; citation_volume=16; citation_issue=8; citation_publication_date=2016; citation_pages=2575-2587; citation_doi=10.1109/JSEN.2016.2519600; citation_id=CR41 citation_journal_title=Multidimens. Syst. Signal Process.; citation_title=Computationally efficient wavelet-based low memory image coder for WMSNs/IoT; citation_author=M Tausif, E Khan, A Pinheiro; citation_volume=18; citation_publication_date=2023; citation_pages=1-24; citation_doi=10.1007/s11045-023-00878-8; citation_id=CR42 Chandra, H., Bajpai, S.: 3D-Block Partitioning Embedded Coding for Hyperspectral Image Sensors. 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), pp 1–5 (2023). https://doi.org/10.1109/PIECON56912.2023.10085841 . citation_journal_title=Int. J. Wavelets Multiresolut. Inf. Process.; citation_title=Hyperspectral image compression using hybrid transform with different wavelet-based transform coding; citation_author=R Nagendran, A Vasuki; citation_volume=18; citation_issue=1; citation_publication_date=2020; citation_pages=1941008; citation_doi=10.1142/S021969131941008X; citation_id=CR44 citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=A novel rate control algorithm for onboard predictive coding of multispectral and hyperspectral images; citation_author=D Valsesia, E Magli; citation_volume=52; citation_issue=10; citation_publication_date=2014; citation_pages=6341-6355; citation_doi=10.1109/TGRS.2013.2296329; citation_id=CR45 citation_journal_title=Multimed. Tools Appl.; citation_title=The linear prediction vector quantization for hyperspectral image compression; citation_author=R Li, Z Pan, Y Wang; citation_volume=78; citation_publication_date=2019; citation_pages=11701-11718; citation_doi=10.1007/s11042-018-6724-8; citation_id=CR46 citation_journal_title=Inf. Commun. Technol. Intell. Syst.; citation_title=Compressive sensing approach to satellite hyperspectral image compression; citation_author=KS Gunasheela, HS Prasantha; citation_publication_date=2019; citation_doi=10.1007/978-981-13-1742-2_49; citation_id=CR47 citation_journal_title=Int. J. Wavelets Multiresol. Inform. Process.; citation_title=Distributed lossy compression for hyperspectral images based on multilevel coset codes; citation_author=K Xu, B Liu, Y Nian, M He, J Wan; citation_volume=15; citation_issue=02; citation_publication_date=2017; citation_pages=1750012; citation_doi=10.1142/S0219691317500126; citation_id=CR48 citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Adaptive spectral–spatial compression of hyperspectral image with sparse representation; citation_author=W Fu, S Li, L Fang, JA Benediktsson; citation_volume=55; citation_issue=2; citation_publication_date=2016; citation_pages=671-682; citation_doi=10.1109/TGRS.2016.2613848; citation_id=CR49 citation_journal_title=Pattern Recogn. Lett.; citation_title=Hyperspectral image compression based on simultaneous sparse representation and general-pixels; citation_author=C Fu, Y Yi, F Luo; citation_volume=116; citation_publication_date=2018; citation_pages=65-71; citation_doi=10.1016/j.patrec.2018.09.013; citation_id=CR50 citation_journal_title=IET Image Proc.; citation_title=Hyperspectral image, video compression using sparse tucker tensor decomposition; citation_author=S Das; citation_volume=15; citation_issue=4; citation_publication_date=2021; citation_pages=964-973; citation_doi=10.1049/ipr2.12077; citation_id=CR51 citation_journal_title=Signal Process. Image Commun.; citation_title=Convolution neural network based lossy compression of hyperspectral images; citation_author=Y Dua, RS Singh, K Parwani, S Lunagariya, V Kumar; citation_volume=95; citation_publication_date=2021; citation_doi=10.1016/j.image.2021.116255; citation_id=CR52 citation_journal_title=Trans. Emerg. Telecommun. Technol.; citation_title=Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications; citation_author=B Sujitha, VS Parvathy, EL Lydia, P Rani, Z Polkowski, K Shankar; citation_volume=32; citation_issue=7; citation_publication_date=2021; citation_pages=e3976; citation_doi=10.1002/ett.3976; citation_id=CR53 citation_journal_title=Remote Sens.; citation_title=Hyperspectral image compression using vector quantization, PCA and JPEG2000; citation_author=D Báscones, C González, D Mozos; citation_volume=10; citation_issue=6; citation_publication_date=2018; citation_pages=907; citation_doi=10.3390/rs10060907; citation_id=CR54 citation_journal_title=J. Inst. Eng. INDIA Series B; citation_title=The role of transforms in image compression; citation_author=VK Bairagi, AM Sapkal, MS Gaikwad; citation_volume=94; citation_publication_date=2013; citation_pages=135-140; citation_doi=10.1007/s40031-013-0049-9; citation_id=CR55 Tang, X., and Pearlman, W.A.: Lossy-to-Lossless Block-Based Compression of Hyperspectral Volumetric Data. 2004 International Conference on Image Processing, Vol. 5., pp. 3283–3286, IEEE (2004). https://doi.org/10.1109/ICIP.2004.1421815 Tang, X., and Pearlman, W.A.: Three-Dimensional Wavelet-Based Compression of Hyperspectral Images. Hyperspectral Data Compression. Boston, MA: Springer US, pp. 273–308 (2006). https://doi.org/10.1007/0-387-28600-4_10 . citation_journal_title=Int. J. Innov. Technol. Explor. Eng. IJITEE.; citation_title=3D wavelet block tree coding for hyperspectral images; citation_author=S Bajpai, NR Kidwai, HV Singh; citation_volume=8; citation_issue=6C; citation_publication_date=2019; citation_pages=64-68; citation_id=CR58 Ngadiran, R., Boussakta, S., Sharif, B., & Bouridane, A.: Efficient implementation of 3D listless SPECK. International Conference on Computer and Communication Engineering (ICCCE'10). IEEE, pp. 1–4, (2010). https://doi.org/10.1109/ICCCE.2010.5556843 . citation_journal_title=J. Sci. Ind. Res.; citation_title=3D listless embedded block coding algorithm for compression of volumetric medical images; citation_author=VK Sudha, R Sudhakar; citation_volume=72; citation_publication_date=2013; citation_pages=735-748; citation_id=CR60 citation_journal_title=Multimed. Tools Appl.; citation_title=Low memory block tree coding for hyperspectral images; citation_author=S Bajpai, NR Kidwai, HV Singh, AK Singh; citation_volume=78; citation_issue=19; citation_publication_date=2019; citation_pages=27193-27209; citation_doi=10.1007/s11042-019-07797-6; citation_id=CR61 citation_journal_title=Multimed. Tools Appl.; citation_title=Low complexity block tree coding for hyperspectral image sensors; citation_author=S Bajpai; citation_volume=81; citation_issue=23; citation_publication_date=2022; citation_pages=33205-33232; citation_doi=10.1007/s11042-022-13057-x; citation_id=CR62 citation_journal_title=Multimed. Tools Appl.; citation_title=A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding; citation_author=S Bajpai, NR Kidwai, HV Singh, AK Singh; citation_volume=81; citation_issue=1; citation_publication_date=2022; citation_pages=841-872; citation_doi=10.1007/s11042-021-11456-0; citation_id=CR63 citation_journal_title=Indones. J. Elect. Eng. Comput. Sci. IJEECS.; citation_title=3D modified wavelet block tree coding for hyperspectral images; citation_author=S Bajpai, HV Singh, NR Kidwai; citation_volume=15; citation_issue=2; citation_publication_date=2019; citation_pages=1001-1008; citation_doi=10.11591/ijeecs.v15.i2.pp1001-1008; citation_id=CR64 citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery; citation_author=AB Kiely, MA Klimesh; citation_volume=47; citation_issue=8; citation_publication_date=2009; citation_pages=2672-2678; citation_doi=10.1109/TGRS.2009.2015291; citation_id=CR65 citation_journal_title=ACM Trans. Multimed. Comput. Commun. Appl. TOMM.; citation_title=A comprehensive study of deep learning-based covert communication; citation_author=A Anand, SA Kumar; citation_volume=18; citation_issue=2; citation_publication_date=2022; citation_pages=1-9; citation_doi=10.1145/3508365; citation_id=CR66 Tang, X., Pearlman, W.A., Modestino, J.W.: Hyperspectral Image Compression Using Three-Dimensional Wavelet Coding. Image and Video Communications and Processing 2003. Vol. 5022. SPIE, (2003). https://doi.org/10.1117/12.476516 . citation_journal_title=Int. J. Image Graph.; citation_title=Wavelet-based image compression encoding techniques—a complete performance analysis; citation_author=SP Raja; citation_volume=20; citation_issue=02; citation_publication_date=2020; citation_pages=2050008; citation_doi=10.1142/S0219467820500084; citation_id=CR68 citation_journal_title=IEEE Geosci. Remote Sens. Mag.; citation_title=The CCSDS 123.0-B-2 low-complexity lossless and near-lossless multispectral and hyperspectral image compression standard: a comprehensive review; citation_author=M Hernández-Cabronero, AB Kiely, M Klimesh, I Blanes, J Ligo, E Magli, J Serra-Sagrista; citation_volume=9; citation_issue=4; citation_publication_date=2021; citation_pages=102-119; citation_doi=10.1109/MGRS.2020.3048443; citation_id=CR69 citation_journal_title=Multimed. Tools Appl.; citation_title=Hiding patient information in medical images: an encrypted dual image reversible and secure patient data hiding algorithm for E-healthcare; citation_author=R Bhardwaj; citation_volume=81; citation_issue=1; citation_publication_date=2022; citation_pages=1125-1152; citation_doi=10.1007/s11042-021-11445-3; citation_id=CR70 citation_journal_title=Vis. Comput.; citation_title=Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression; citation_author=N Zikiou, M Lahdir, D Helbert; citation_volume=36; citation_issue=7; citation_publication_date=2020; citation_pages=1473-1490; citation_doi=10.1007/s00371-019-01753-z; citation_id=CR71 citation_journal_title=Multimed. Tools Appl.; citation_title=PSNR vs SSIM: imperceptibility quality assessment for image steganography; citation_author=DR Setiadi; citation_volume=80; citation_issue=6; citation_publication_date=2021; citation_pages=8423-8444; citation_doi=10.1007/s11042-020-10035-z; citation_id=CR72