Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mã hóa khối không danh sách 3D cho các cảm biến ảnh siêu phổ hạn chế tài nguyên
Signal, Image and Video Processing - Trang 1-16
Tóm tắt
Hình ảnh siêu phổ cung cấp nội dung thông tin quang phổ phong phú, tạo điều kiện cho nhiều ứng dụng khác nhau. Với sự phát triển nhanh chóng của độ phân giải không gian và quang phổ của các thiết bị quang học, kích thước dữ liệu hình ảnh đã tăng lên nhiều lần. Vì vậy, cần một thuật toán nén có độ phức tạp mã hóa thấp, yêu cầu bộ nhớ mã hóa thấp và hiệu quả mã hóa cao. Trong những năm gần đây, nhiều thuật toán mã hóa đã được đề xuất. Các thuật toán nén hình ảnh siêu phổ dựa trên biến đổi wavelet với phân vùng tập hợp có hiệu suất mã hóa vượt trội. Những thuật toán này sử dụng danh sách liên kết hoặc bảng trạng thái để theo dõi sự quan trọng/vô nghĩa của các tập hợp/ hệ số được phân vùng. Thuật toán được đề xuất sử dụng thuộc tính phân cấp tháp của biến đổi wavelet. Các điểm đánh dấu được sử dụng để theo dõi sự quan trọng/vô nghĩa của cấp độ tháp. Một cấp độ tháp đơn có nhiều tập hợp. Một cấp độ tháp không quan trọng có nhiều tập hợp được đại diện bằng một bit trong thuật toán nén được đề xuất, trong khi một tập hợp không quan trọng trong khối 3D-SPECK và 3D-LSK được đại diện bằng một bit. Nhờ đó, yêu cầu về bit trong thuật toán được đề xuất thấp hơn so với các thuật toán nén biến đổi wavelet khác ở các mặt phẳng bit cao. Kết quả mô phỏng cho thấy rằng thuật toán nén được đề xuất có hiệu quả mã hóa cao với độ phức tạp mã hóa rất thấp và yêu cầu bộ nhớ mã hóa vừa phải. Độ phức tạp mã hóa giảm giúp cải thiện hiệu suất của cảm biến hình ảnh và giảm mức tiêu thụ điện năng. Do đó, thuật toán nén được đề xuất có tiềm năng lớn trong các hệ thống hình ảnh siêu phổ trên tàu hạn chế tài nguyên.
Từ khóa
#ảnh siêu phổ #nén hình ảnh #biến đổi wavelet #mã hóa #cảm biến ảnhTài liệu tham khảo
citation_journal_title=LWT.; citation_title=Classification of pulse flours using near-infrared hyperspectral imaging; citation_author=C Sivakumar, MM Chaudhry, J Paliwal; citation_volume=15; citation_issue=154; citation_publication_date=2022; citation_pages=112799; citation_doi=10.1016/j.lwt.2021.112799; citation_id=CR1
citation_journal_title=IEEE Sens. J.; citation_title=Hyperspectral imaging based corrosion detection in nuclear packages; citation_author=J Zabalza, P Murray, S Bennett, A Campbell, S Marshall, J Ren, Y Yan, R Bernard, S Hepworth, S Malone, N Cockbain; citation_volume=23; citation_issue=1; citation_publication_date=2023; citation_pages=25607-25617; citation_doi=10.1109/JSEN.2023.3312938; citation_id=CR2
citation_journal_title=Precis. Agric.; citation_title=Drone remote sensing of wheat N using hyperspectral sensor and machine learning; citation_author=RN Sahoo, RG Rejith, S Gakhar, R Ranjan, MC Meena, A Dey, J Mukherjee, R Dhakar, A Meena, A Daas, S Babu; citation_publication_date=2023; citation_doi=10.1007/s11119-023-10089-7; citation_id=CR3
Sarinova, A., Lisnevskyi, R., Biloshchytskyi, A., and Akizhanova, A.: The Lossless Compression Algorithm of Hyperspectral Aerospace Images with Correlation and Bands Grouping. 2022 International Conference on Smart Information Systems and Technologies (SIST). IEEE, pp. 1-5 (2022).
https://doi.org/10.1109/SIST54437.2022.9945821
.
citation_journal_title=BioChip J.; citation_title=Hyperspectral imaging for clinical applications; citation_author=J Yoon; citation_volume=16; citation_issue=1; citation_publication_date=2022; citation_pages=1-12; citation_doi=10.1007/s13206-021-00041-0; citation_id=CR5
Shinde, S.R., Bhavsar, K., Kimbahune, S., Khandelwal, S., Ghose, A., & Pal, A. Detection of Counterfeit Medicines using Hyperspectral Sensing. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp. 6155–6158, (2020).
https://doi.org/10.1109/EMBC44109.2020.9176419
.
citation_journal_title=Hyperspect. Imaging Appl.; citation_title=Hyperspectral imaging analysis of corrosion products on metals in the UV range; citation_author=A Keane, P Murray, J Zabalza, A Buono, N Cockbain, R Bernard; citation_volume=II; citation_issue=12338; citation_publication_date=2023; citation_pages=44-53; citation_doi=10.1117/12.2647429; citation_id=CR7
citation_journal_title=Sensors.; citation_title=Analysis of hyperspectral data to develop an approach for document images; citation_author=Z Zaman, SB Ahmed, MI Malik; citation_volume=23; citation_issue=15; citation_publication_date=2023; citation_pages=6845; citation_doi=10.3390/s23156845; citation_id=CR8
citation_journal_title=J. Agric. Food Res.; citation_title=Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage; citation_author=NA Aviara, JT Liberty, OS Olatunbosun, HA Shoyombo, SK Oyeniyi; citation_volume=8; citation_publication_date=2022; citation_doi=10.1016/j.jafr.2022.100288; citation_id=CR9
citation_journal_title=Earth Sci. Inform.; citation_title=Performance evaluation of dimensionality reduction techniques on hyperspectral data for mineral exploration; citation_author=C Deepa, A Shetty, AV Narasimhadhan; citation_volume=16; citation_issue=1; citation_publication_date=2023; citation_pages=25-36; citation_doi=10.1007/s12145-023-00956-2; citation_id=CR10
Nisha, A., and Anitha, A.: Current Advances in Hyperspectral Remote Sensing in Urban Planning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, pp. 94–98, (2022).
https://doi.org/10.1109/ICICICT54557.2022.9917771
.
citation_journal_title=Climate Change Impacts Nat. Resour. Ecosyst. Agric. Syst.; citation_title=Application of hyperspectral remote sensing role in precision farming and sustainable agriculture under climate change: A review; citation_author=CB Pande, KN Moharir; citation_volume=14; citation_publication_date=2023; citation_pages=503-520; citation_doi=10.1007/978-3-031-19059-9_21; citation_id=CR12
citation_journal_title=Environ. Sci. Pollut. Res.; citation_title=Dimensionality reduction strategies for land use land cover classification based on airborne hyperspectral imagery: a survey; citation_author=MA Moharram, DM Sundaram; citation_volume=30; citation_issue=3; citation_publication_date=2023; citation_pages=5580-5602; citation_doi=10.1007/s11356-022-24202-2; citation_id=CR13
citation_journal_title=Remote Sens.; citation_title=The potential of monitoring carbon dioxide emission in a geostationary view with the GIIRS meteorological hyperspectral infrared sounder; citation_author=Q Zhang, W Smith, M Shao; citation_volume=15; citation_issue=4; citation_publication_date=2023; citation_pages=886; citation_doi=10.3390/rs15040886; citation_id=CR14
Jun, S., Choi, W., Kim, D., Park, H., Kyeon, D., Lee, K., Jeon, Y.J., Lee, C., Kim, K., Ha, J. and Ryu, S.: Semiconductor Device Metrology for Detecting Defective Chip Due to High-Aspect Ratio-Based Structures using Hyperspectral Imaging and Deep Learning. Metrology, Inspection, and Process Control XXXVII. Vol. 12496. SPIE (2023).
https://doi.org/10.1117/12.2657062
.
citation_journal_title=Remote Sens.; citation_title=Autonomous satellite wildfire detection using hyperspectral imagery and neural networks: a case study on Australian wildfire; citation_author=K Thangavel, D Spiller, R Sabatini, S Amici, ST Sasidharan, H Fayek, P Marzocca; citation_volume=15; citation_issue=3; citation_publication_date=2023; citation_pages=720; citation_doi=10.3390/rs15030720; citation_id=CR16
citation_journal_title=J. Indian Soc. Remote Sens.; citation_title=Identification of water and nitrogen stress indicative spectral bands using hyperspectral remote sensing in maize during post-monsoon season; citation_author=BB Naik, HR Naveen, G Sreenivas, KK Choudary, D Devkumar, J Adinarayana; citation_volume=48; citation_publication_date=2020; citation_pages=1787-1795; citation_doi=10.1007/s12524-020-01200-w; citation_id=CR17
citation_journal_title=IEEE Geosci. Remote Sens. Mag.; citation_title=Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques; citation_author=M Shimoni, R Haelterman, C Perneel; citation_volume=7; citation_issue=2; citation_publication_date=2019; citation_pages=101-117; citation_doi=10.1109/MGRS.2019.2902525; citation_id=CR18
Bajpai, S., Singh, H.V., Kidwai, N.R.: Feature Extraction & Classification of Hyperspectral Images Using Singular Spectrum Analysis & Multinomial Logistic Regression Classifiers." 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, pp. 97–100 (2017).
https://doi.org/10.1109/MSPCT.2017.8363982
.
Chandra, H., and Bajpai, S.: Listless Block Cube Tree Coding For Low Resource Hyperspectral Image Compression Sensors. 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 1–5. (2022)
https://doi.org/10.1109/IMPACT55510.2022.10029076
.
citation_journal_title=Microprocess. Microsyst.; citation_title=Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images; citation_author=M Ramamurthy, YH Robinson, S Vimal, A Suresh; citation_volume=79; citation_publication_date=2020; citation_doi=10.1016/j.micpro.2020.103280; citation_id=CR21
citation_journal_title=Geosci. Remote Sens. Lett.; citation_title=Singular spectrum analysis for effective feature extraction in hyperspectral imaging.; citation_author=J Zabalza, J Ren, Z Wang, S Marshall, J Wang; citation_volume=11; citation_issue=11; citation_publication_date=2014; citation_pages=1886-1890; citation_doi=10.1109/LGRS.2014.2312754; citation_id=CR22
citation_journal_title=Multimed. Tools Appl.; citation_title=Hyperspectral imaging and target detection algorithms: a review; citation_author=KA Sneha; citation_volume=81; citation_issue=30; citation_publication_date=2022; citation_pages=44141-44206; citation_doi=10.1007/s11042-022-13235-x; citation_id=CR23
citation_journal_title=IET Image Proc.; citation_title=Band selection of hyperspectral image by sparse manifold clustering; citation_author=S Das, S Bhattacharya, A Routray, A Kani Deb; citation_volume=13; citation_issue=10; citation_publication_date=2019; citation_pages=1625-1635; citation_doi=10.1049/iet-ipr.2018.5423; citation_id=CR24
citation_journal_title=Remote Sens.; citation_title=Hyperspectral image denoising via adversarial learning; citation_author=J Zhang, Z Cai, F Chen, D Zeng; citation_volume=14; citation_issue=8; citation_publication_date=2022; citation_pages=1790; citation_doi=10.3390/rs14081790; citation_id=CR25
citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Multiscale diff-changed feature fusion network for hyperspectral image change detection; citation_author=F Luo, T Zhou, J Liu, T Guo, X Gong, J Ren; citation_volume=61; citation_publication_date=2023; citation_pages=1-13; citation_doi=10.1109/TGRS.2023.3241097; citation_id=CR26
citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Dimensionality reduction and classification of hyperspectral image via multistructure unified discriminative embedding; citation_author=F Luo, Z Zou, J Liu, Z Lin; citation_volume=60; citation_publication_date=2021; citation_pages=1-16; citation_doi=10.1109/TGRS.2021.3128764; citation_id=CR27
citation_journal_title=IETE Tech. Rev.; citation_title=PCA-based feature reduction for hyperspectral remote sensing image classification; citation_author=MP Uddin, MA Mamun, MA Hossain; citation_volume=38; citation_issue=4; citation_publication_date=2021; citation_pages=377-396; citation_doi=10.1080/02564602.2020.1740615; citation_id=CR28
citation_journal_title=Multimed. Tools Appl.; citation_title=Hyperspectral image segmentation: a comprehensive survey; citation_author=R Grewal, SS Kasana, G Kasana; citation_volume=82; citation_issue=14; citation_publication_date=2023; citation_pages=20819-20872; citation_doi=10.1007/s11042-022-13959-w; citation_id=CR29
citation_journal_title=J. Appl. Remote. Sens.; citation_title=Unmixing aware compression of hyperspectral image by rank aware orthogonal parallel factorization decomposition; citation_author=S Das, S Ghosal; citation_volume=17; citation_issue=4; citation_publication_date=2023; citation_pages=046509-046509; citation_doi=10.1117/1.JRS.17.046509; citation_id=CR30
citation_journal_title=J. Indian Soc. Remote Sens.; citation_title=Comparative analysis and implication of Hyperion hyperspectral and landsat-8 multispectral dataset in land classification; citation_author=N Dahiya, S Singh, S Gupta; citation_volume=51; citation_publication_date=2023; citation_pages=2201-2213; citation_doi=10.1007/s12524-023-01760-7; citation_id=CR31
citation_journal_title=J. Elect. Comput. Eng.; citation_title=Curvelet transform based compression algorithm for low resource hyperspectral image sensors; citation_author=S Bajpai, D Sharma, M Alam, VS Chandel, AK Pandey, SL Tripathi; citation_volume=2023; citation_publication_date=2023; citation_pages=1-18; citation_doi=10.1155/2023/8961271; citation_id=CR32
citation_journal_title=Multimed. Tools Appl.; citation_title=Fractional wavelet filter based low memory coding for hyperspectral image sensors; citation_author=S Bajpai, NR Kidwai; citation_publication_date=2023; citation_doi=10.1007/s11042-023-16528-x; citation_id=CR33
citation_journal_title=IETE Tech. Rev.; citation_title=Success journey of coherent PM-QPSK technique with its variants: a survey; citation_author=D Sharma, YK Prajapati, R Tripathi; citation_volume=37; citation_issue=1; citation_publication_date=2020; citation_pages=36-55; citation_doi=10.1080/02564602.2018.1557569; citation_id=CR34
citation_journal_title=Comput. Sci. Rev.; citation_title=Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges; citation_author=G Jaiswal, R Rani, H Mangotra, A Sharma; citation_volume=50; citation_publication_date=2023; citation_doi=10.1016/j.cosrev.2023.100584; citation_id=CR35
citation_journal_title=The Vis. Comput.; citation_title=Compression of multi-temporal hyperspectral images based on RLS filter; citation_author=Y Dua, RS Singh, V Kumar; citation_volume=38; citation_issue=1; citation_publication_date=2022; citation_pages=65-75; citation_doi=10.1007/s00371-020-02000-6; citation_id=CR36
citation_journal_title=J. Intell. Fuzzy Syst.; citation_title=3D-Memory efficient listless set partitioning in hierarchical trees for hyperspectral image sensors.; citation_author=H Chandra, S Bajpai, M Alam, VS Chandel, AK Pandey, D Pandey; citation_volume=45; citation_issue=6; citation_publication_date=2023; citation_pages=11163-11187; citation_doi=10.3233/JIFS-231684; citation_id=CR37
citation_journal_title=Multimed. Tools Appl.; citation_title=Low complexity image coding technique for hyperspectral image sensors; citation_author=S Bajpai; citation_volume=82; citation_issue=20; citation_publication_date=2023; citation_pages=31233-31258; citation_doi=10.1007/s11042-023-14738-x; citation_id=CR38
citation_journal_title=Opt. Eng.; citation_title=Comprehensive review of hyperspectral image compression algorithms; citation_author=Y Dua, V Kumar, RS Singh; citation_volume=59; citation_issue=9; citation_publication_date=2020; citation_pages=090902; citation_doi=10.1117/1.OE.59.9.090902; citation_id=CR39
citation_journal_title=Wireless Pers. Commun.; citation_title=Low complexity and low memory compression algorithm for hyperspectral image sensors; citation_author=S Bajpai; citation_volume=131; citation_issue=2; citation_publication_date=2023; citation_pages=805-833; citation_doi=10.1007/s11277-023-10455-8; citation_id=CR40
citation_journal_title=IEEE Sens. J.; citation_title=ZM-SPECK: A fast and memoryless image coder for multimedia sensor networks; citation_author=NR Kidwai, E Khan, M Reisslein; citation_volume=16; citation_issue=8; citation_publication_date=2016; citation_pages=2575-2587; citation_doi=10.1109/JSEN.2016.2519600; citation_id=CR41
citation_journal_title=Multidimens. Syst. Signal Process.; citation_title=Computationally efficient wavelet-based low memory image coder for WMSNs/IoT; citation_author=M Tausif, E Khan, A Pinheiro; citation_volume=18; citation_publication_date=2023; citation_pages=1-24; citation_doi=10.1007/s11045-023-00878-8; citation_id=CR42
Chandra, H., Bajpai, S.: 3D-Block Partitioning Embedded Coding for Hyperspectral Image Sensors. 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), pp 1–5 (2023).
https://doi.org/10.1109/PIECON56912.2023.10085841
.
citation_journal_title=Int. J. Wavelets Multiresolut. Inf. Process.; citation_title=Hyperspectral image compression using hybrid transform with different wavelet-based transform coding; citation_author=R Nagendran, A Vasuki; citation_volume=18; citation_issue=1; citation_publication_date=2020; citation_pages=1941008; citation_doi=10.1142/S021969131941008X; citation_id=CR44
citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=A novel rate control algorithm for onboard predictive coding of multispectral and hyperspectral images; citation_author=D Valsesia, E Magli; citation_volume=52; citation_issue=10; citation_publication_date=2014; citation_pages=6341-6355; citation_doi=10.1109/TGRS.2013.2296329; citation_id=CR45
citation_journal_title=Multimed. Tools Appl.; citation_title=The linear prediction vector quantization for hyperspectral image compression; citation_author=R Li, Z Pan, Y Wang; citation_volume=78; citation_publication_date=2019; citation_pages=11701-11718; citation_doi=10.1007/s11042-018-6724-8; citation_id=CR46
citation_journal_title=Inf. Commun. Technol. Intell. Syst.; citation_title=Compressive sensing approach to satellite hyperspectral image compression; citation_author=KS Gunasheela, HS Prasantha; citation_publication_date=2019; citation_doi=10.1007/978-981-13-1742-2_49; citation_id=CR47
citation_journal_title=Int. J. Wavelets Multiresol. Inform. Process.; citation_title=Distributed lossy compression for hyperspectral images based on multilevel coset codes; citation_author=K Xu, B Liu, Y Nian, M He, J Wan; citation_volume=15; citation_issue=02; citation_publication_date=2017; citation_pages=1750012; citation_doi=10.1142/S0219691317500126; citation_id=CR48
citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Adaptive spectral–spatial compression of hyperspectral image with sparse representation; citation_author=W Fu, S Li, L Fang, JA Benediktsson; citation_volume=55; citation_issue=2; citation_publication_date=2016; citation_pages=671-682; citation_doi=10.1109/TGRS.2016.2613848; citation_id=CR49
citation_journal_title=Pattern Recogn. Lett.; citation_title=Hyperspectral image compression based on simultaneous sparse representation and general-pixels; citation_author=C Fu, Y Yi, F Luo; citation_volume=116; citation_publication_date=2018; citation_pages=65-71; citation_doi=10.1016/j.patrec.2018.09.013; citation_id=CR50
citation_journal_title=IET Image Proc.; citation_title=Hyperspectral image, video compression using sparse tucker tensor decomposition; citation_author=S Das; citation_volume=15; citation_issue=4; citation_publication_date=2021; citation_pages=964-973; citation_doi=10.1049/ipr2.12077; citation_id=CR51
citation_journal_title=Signal Process. Image Commun.; citation_title=Convolution neural network based lossy compression of hyperspectral images; citation_author=Y Dua, RS Singh, K Parwani, S Lunagariya, V Kumar; citation_volume=95; citation_publication_date=2021; citation_doi=10.1016/j.image.2021.116255; citation_id=CR52
citation_journal_title=Trans. Emerg. Telecommun. Technol.; citation_title=Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications; citation_author=B Sujitha, VS Parvathy, EL Lydia, P Rani, Z Polkowski, K Shankar; citation_volume=32; citation_issue=7; citation_publication_date=2021; citation_pages=e3976; citation_doi=10.1002/ett.3976; citation_id=CR53
citation_journal_title=Remote Sens.; citation_title=Hyperspectral image compression using vector quantization, PCA and JPEG2000; citation_author=D Báscones, C González, D Mozos; citation_volume=10; citation_issue=6; citation_publication_date=2018; citation_pages=907; citation_doi=10.3390/rs10060907; citation_id=CR54
citation_journal_title=J. Inst. Eng. INDIA Series B; citation_title=The role of transforms in image compression; citation_author=VK Bairagi, AM Sapkal, MS Gaikwad; citation_volume=94; citation_publication_date=2013; citation_pages=135-140; citation_doi=10.1007/s40031-013-0049-9; citation_id=CR55
Tang, X., and Pearlman, W.A.: Lossy-to-Lossless Block-Based Compression of Hyperspectral Volumetric Data. 2004 International Conference on Image Processing, Vol. 5., pp. 3283–3286, IEEE (2004).
https://doi.org/10.1109/ICIP.2004.1421815
Tang, X., and Pearlman, W.A.: Three-Dimensional Wavelet-Based Compression of Hyperspectral Images. Hyperspectral Data Compression. Boston, MA: Springer US, pp. 273–308 (2006).
https://doi.org/10.1007/0-387-28600-4_10
.
citation_journal_title=Int. J. Innov. Technol. Explor. Eng. IJITEE.; citation_title=3D wavelet block tree coding for hyperspectral images; citation_author=S Bajpai, NR Kidwai, HV Singh; citation_volume=8; citation_issue=6C; citation_publication_date=2019; citation_pages=64-68; citation_id=CR58
Ngadiran, R., Boussakta, S., Sharif, B., & Bouridane, A.: Efficient implementation of 3D listless SPECK. International Conference on Computer and Communication Engineering (ICCCE'10). IEEE, pp. 1–4, (2010).
https://doi.org/10.1109/ICCCE.2010.5556843
.
citation_journal_title=J. Sci. Ind. Res.; citation_title=3D listless embedded block coding algorithm for compression of volumetric medical images; citation_author=VK Sudha, R Sudhakar; citation_volume=72; citation_publication_date=2013; citation_pages=735-748; citation_id=CR60
citation_journal_title=Multimed. Tools Appl.; citation_title=Low memory block tree coding for hyperspectral images; citation_author=S Bajpai, NR Kidwai, HV Singh, AK Singh; citation_volume=78; citation_issue=19; citation_publication_date=2019; citation_pages=27193-27209; citation_doi=10.1007/s11042-019-07797-6; citation_id=CR61
citation_journal_title=Multimed. Tools Appl.; citation_title=Low complexity block tree coding for hyperspectral image sensors; citation_author=S Bajpai; citation_volume=81; citation_issue=23; citation_publication_date=2022; citation_pages=33205-33232; citation_doi=10.1007/s11042-022-13057-x; citation_id=CR62
citation_journal_title=Multimed. Tools Appl.; citation_title=A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding; citation_author=S Bajpai, NR Kidwai, HV Singh, AK Singh; citation_volume=81; citation_issue=1; citation_publication_date=2022; citation_pages=841-872; citation_doi=10.1007/s11042-021-11456-0; citation_id=CR63
citation_journal_title=Indones. J. Elect. Eng. Comput. Sci. IJEECS.; citation_title=3D modified wavelet block tree coding for hyperspectral images; citation_author=S Bajpai, HV Singh, NR Kidwai; citation_volume=15; citation_issue=2; citation_publication_date=2019; citation_pages=1001-1008; citation_doi=10.11591/ijeecs.v15.i2.pp1001-1008; citation_id=CR64
citation_journal_title=IEEE Trans. Geosci. Remote Sens.; citation_title=Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery; citation_author=AB Kiely, MA Klimesh; citation_volume=47; citation_issue=8; citation_publication_date=2009; citation_pages=2672-2678; citation_doi=10.1109/TGRS.2009.2015291; citation_id=CR65
citation_journal_title=ACM Trans. Multimed. Comput. Commun. Appl. TOMM.; citation_title=A comprehensive study of deep learning-based covert communication; citation_author=A Anand, SA Kumar; citation_volume=18; citation_issue=2; citation_publication_date=2022; citation_pages=1-9; citation_doi=10.1145/3508365; citation_id=CR66
Tang, X., Pearlman, W.A., Modestino, J.W.: Hyperspectral Image Compression Using Three-Dimensional Wavelet Coding. Image and Video Communications and Processing 2003. Vol. 5022. SPIE, (2003).
https://doi.org/10.1117/12.476516
.
citation_journal_title=Int. J. Image Graph.; citation_title=Wavelet-based image compression encoding techniques—a complete performance analysis; citation_author=SP Raja; citation_volume=20; citation_issue=02; citation_publication_date=2020; citation_pages=2050008; citation_doi=10.1142/S0219467820500084; citation_id=CR68
citation_journal_title=IEEE Geosci. Remote Sens. Mag.; citation_title=The CCSDS 123.0-B-2 low-complexity lossless and near-lossless multispectral and hyperspectral image compression standard: a comprehensive review; citation_author=M Hernández-Cabronero, AB Kiely, M Klimesh, I Blanes, J Ligo, E Magli, J Serra-Sagrista; citation_volume=9; citation_issue=4; citation_publication_date=2021; citation_pages=102-119; citation_doi=10.1109/MGRS.2020.3048443; citation_id=CR69
citation_journal_title=Multimed. Tools Appl.; citation_title=Hiding patient information in medical images: an encrypted dual image reversible and secure patient data hiding algorithm for E-healthcare; citation_author=R Bhardwaj; citation_volume=81; citation_issue=1; citation_publication_date=2022; citation_pages=1125-1152; citation_doi=10.1007/s11042-021-11445-3; citation_id=CR70
citation_journal_title=Vis. Comput.; citation_title=Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression; citation_author=N Zikiou, M Lahdir, D Helbert; citation_volume=36; citation_issue=7; citation_publication_date=2020; citation_pages=1473-1490; citation_doi=10.1007/s00371-019-01753-z; citation_id=CR71
citation_journal_title=Multimed. Tools Appl.; citation_title=PSNR vs SSIM: imperceptibility quality assessment for image steganography; citation_author=DR Setiadi; citation_volume=80; citation_issue=6; citation_publication_date=2021; citation_pages=8423-8444; citation_doi=10.1007/s11042-020-10035-z; citation_id=CR72