3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis

Electrochemical Energy Reviews - Tập 4 Số 2 - Trang 269-335 - 2021
Zhengming Xu1, Wenjing Deng1, Xiaolei Wang1
1Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834

Pomerantseva, E., Bonaccorso, F., Feng, X., et al.: Energy storage: the future enabled by nanomaterials. Science. (2019). https://doi.org/10.1126/science.aan8285

Yun, Q.B., Lu, Q.P., Zhang, X., et al.: Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed. 57, 626–646 (2018). https://doi.org/10.1002/anie.201706426

Li, Z., Liu, Z., Sun, H.Y., et al.: Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev. 115, 7046–7117 (2015). https://doi.org/10.1021/acs.chemrev.5b00102

Tang, C., Wang, H.F., Huang, J.Q., et al.: 3D hierarchical porous graphene-based energy materials: synthesis, functionalization, and application in energy storage and conversion. Electrochem. Energy Rev. 2, 332–371 (2019). https://doi.org/10.1007/s41918-019-00033-7

Li, K., Liang, M.Y., Wang, H., et al.: 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842

Nardecchia, S., Carriazo, D., Ferrer, M.L., et al.: Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013). https://doi.org/10.1039/c2cs35353a

Xu, Y., Zhou, M., Lei, Y.: Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 6, 1502514 (2016). https://doi.org/10.1002/aenm.201502514

Sun, H.T., Zhu, J., Baumann, D., et al.: Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9

Cong, L.N., Xie, H.M., Li, J.H.: Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 7, 1601906 (2017). https://doi.org/10.1002/aenm.201601906

Jorge, A.B., Jervis, R., Periasamy, A.P., et al.: 3D carbon materials for efficient oxygen and hydrogen electrocatalysis. Adv. Energy Mater. 10, 1902494 (2020). https://doi.org/10.1002/aenm.201902494

Hou, J.G., Wu, Y.Z., Zhang, B., et al.: Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 29, 1808367 (2019). https://doi.org/10.1002/adfm.201808367

Li, X., Yu, J.G., Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/c5cs00838g

Tang, S.T., Qiu, W.T., Xiao, S., et al.: Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy Environ. Sci. 13, 660–684 (2020). https://doi.org/10.1039/C9EE02986A

Hao, Q., Jia, G.H., Wei, W., et al.: Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13, 18–37 (2020). https://doi.org/10.1007/s12274-019-2589-z

Lu, F.N., Neal, E.A., Nakanishi, T.: Self-assembled and nonassembled alkylated-fullerene materials. Acc. Chem. Res. 52, 1834–1843 (2019). https://doi.org/10.1021/acs.accounts.9b00217

Das, S., Presselt, M.: Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies. J. Mater. Chem. C 7, 6194–6216 (2019). https://doi.org/10.1039/c9tc00889f

Babu, S.S., Möhwald, H., Nakanishi, T.: Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 39, 4021–4035 (2010). https://doi.org/10.1039/c000680g

Nakanishi, T., Ariga, K., Michinobu, T., et al.: Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 3, 2019–2023 (2007). https://doi.org/10.1002/smll.200700647

Nakanishi, T., Michinobu, T., Yoshida, K., et al.: Nanocarbon superhydrophobic surfaces created from fullerene-based hierarchical supramolecular assemblies. Adv. Mater. 20, 443–446 (2008). https://doi.org/10.1002/adma.200701537

Wang, J.B., Shen, Y.F., Kessel, S., et al.: Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives. Angew. Chem. Int. Ed. 48, 2166–2170 (2009). https://doi.org/10.1002/anie.200900106

Zhang, X., Li, X.D., Ma, L.X., et al.: Electronic and electrochemical properties as well as flowerlike supramolecular assemblies of fulleropyrrolidines bearing ester substituents with different alkyl chain lengths. RSC Adv. 4, 60342–60348 (2014). https://doi.org/10.1039/C4RA10654G

Zhang, X., Nakanishi, T., Ogawa, T., et al.: Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent. Chem. Commun. (Camb.) 46, 8752–8754 (2010). https://doi.org/10.1039/c0cc03331f

Cha, S.I., Miyazawa, K., Kim, J.D.: Vertically well-aligned C60 microtube crystal array prepared using a solution-based, one-step process. Chem. Mater. 20, 1667–1669 (2008). https://doi.org/10.1021/cm702986f

Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

Zhang, S.C., Qian, L., Zhao, Q.C., et al.: Carbon nanotube: controlled synthesis determines its future. Sci. China Mater. 63, 16–34 (2020). https://doi.org/10.1007/s40843-019-9581-4

Rao, R., Pint, C.L., Islam, A.E., et al.: Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12, 11756–11784 (2018). https://doi.org/10.1021/acsnano.8b06511

Shah, K.A., Tali, B.A.: Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016). https://doi.org/10.1016/j.mssp.2015.08.013

Hata, K., Futaba, D.N., Mizuno, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004). https://doi.org/10.1126/science.1104962

Cho, W., Schulz, M., Shanov, V.: Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon 72, 264–273 (2014). https://doi.org/10.1016/j.carbon.2014.01.074

Gong, K.P., Du, F., Xia, Z.H., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049

Wang, H.Y., Moore, J.J.: Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50, 1235–1242 (2012). https://doi.org/10.1016/j.carbon.2011.10.041

Sharma, P., Pavelyev, V., Kumar, S., et al.: Analysis on the synthesis of vertically aligned carbon nanotubes: growth mechanism and techniques. J. Mater. Sci.: Mater. Electron. 31, 4399–4443 (2020). https://doi.org/10.1007/s10854-020-03021-6

Arora, N., Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014). https://doi.org/10.1016/j.diamond.2014.10.001

Cai, X.K., Cong, H.T., Liu, C.: Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 50, 2726–2730 (2012). https://doi.org/10.1016/j.carbon.2012.02.031

Hou, H., Reneker, D.: Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv. Mater. 16, 69–73 (2004). https://doi.org/10.1002/adma.200306205

Zeng, Y.X., Zhang, X.Y., Qin, R.F., et al.: Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675

Xia, B.Y., Yan, Y., Li, N., et al.: A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6

Meng, J.S., Niu, C.J., Xu, L.H., et al.: General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 139, 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942

Chen, Z.L., Wu, R.B., Liu, Y., et al.: Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 1802011 (2018). https://doi.org/10.1002/adma.201802011

Lee, S.H., Sridhar, V., Jung, J.H., et al.: Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7, 4242–4251 (2013). https://doi.org/10.1021/nn4007253

Adeniran, B., Mokaya, R.: Low temperature synthesized carbon nanotube superstructures with superior CO2and hydrogen storage capacity. J. Mater. Chem. A 3, 5148–5161 (2015). https://doi.org/10.1039/c4ta06539e

Chen, L.F., Feng, Y., Liang, H.W., et al.: Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv. Energy Mater. 7, 1700826 (2017). https://doi.org/10.1002/aenm.201700826

Jin, S.L., Deng, H.G., Long, D.H., et al.: Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J. Power Sources 196, 3887–3893 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.078

Shi, W.B., Zhou, X.C., Li, J.Y., et al.: High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes. Environ. Sci. Technol. Lett. 5, 692–700 (2018). https://doi.org/10.1021/acs.estlett.8b00397

Luo, J.Y., Jang, H.D., Sun, T., et al.: Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011). https://doi.org/10.1021/nn203115u

Luo, J.Y., Zhao, X., Wu, J.S., et al.: Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012). https://doi.org/10.1021/jz3006892

Chen, C., Xu, Z., Han, Y., et al.: Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces. 8, 8000–8007 (2016). https://doi.org/10.1021/acsami.6b00126

Park, S.H., Kim, H.K., Yoon, S.B., et al.: Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 27, 457–465 (2015). https://doi.org/10.1021/cm5034244

Lee, J.Y., Lee, K.H., Kim, Y.J., et al.: Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv. Funct. Mater. 25, 3606–3614 (2015). https://doi.org/10.1002/adfm.201404507

Jin, H.L., Bu, Y.F., Li, J., et al.: Strong graphene 3D assemblies with high elastic recovery and hardness. Adv. Mater. 30, 1707424 (2018). https://doi.org/10.1002/adma.201707424

Chen, J., Bo, Z., Lu, G.: Vertically-Oriented Graphene. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15302-5

Bo, Z., Mao, S., Han, Z.J., et al.: Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44, 2108–2121 (2015). https://doi.org/10.1039/c4cs00352g

Wang, S.G., Wang, J.J., Miraldo, P., et al.: High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl. Phys. Lett. 89, 183103 (2006). https://doi.org/10.1063/1.2372708

Ren, G.F., Pan, X., Bayne, S., et al.: Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71, 94–101 (2014). https://doi.org/10.1016/j.carbon.2014.01.017

Bo, Z., Yu, K.H., Lu, G.H., et al.: Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission. Energy Environ. Sci. 4, 2525–2528 (2011). https://doi.org/10.1039/C1EE01140E

Chang, H.C., Chang, H.Y., Su, W.J., et al.: Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth. Appl. Surf. Sci. 258, 8599–8602 (2012). https://doi.org/10.1016/j.apsusc.2012.05.057

Yu, K.H., Lu, G.H., Bo, Z., et al.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2, 1556–1562 (2011). https://doi.org/10.1021/jz200641c

Zhu, M.Y., Wang, J.J., Holloway, B.C., et al.: A mechanism for carbon nanosheet formation. Carbon 45, 2229–2234 (2007). https://doi.org/10.1016/j.carbon.2007.06.017

Zhao, J., Shaygan, M., Eckert, J., et al.: A growth mechanism for free-standing vertical graphene. Nano Lett. 14, 3064–3071 (2014). https://doi.org/10.1021/nl501039c

Fan, Z.J., Yan, J., Zhi, L.J., et al.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010). https://doi.org/10.1002/adma.201001029

Du, F., Yu, D.S., Dai, L.M., et al.: Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011). https://doi.org/10.1021/cm2021214

Mao, B.S., Wen, Z.H., Bo, Z., et al.: Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Appl. Mater. Interfaces. 6, 9881–9889 (2014). https://doi.org/10.1021/am502604u

Zhu, Y., Li, L., Zhang, C.G., et al.: A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3, 1225 (2012). https://doi.org/10.1038/ncomms2234

Lee, D.H., Kim, J.E., Han, T.H., et al.: Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 1247–1252 (2010). https://doi.org/10.1002/adma.200903063

Xue, Y., Ding, Y., Niu, J., et al.: Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci Adv 1, 1400198 (2015). https://doi.org/10.1126/sciadv.1400198

Xue, Y.R., Li, Y.L., Zhang, J., et al.: 2D graphdiyne materials: challenges and opportunities in energy field. Sci. China Chem. 61, 765–786 (2018). https://doi.org/10.1007/s11426-018-9270-y

Li, G.X., Li, Y.L., Qian, X.M., et al.: Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 115, 2611–2615 (2011). https://doi.org/10.1021/jp107996f

Qian, X., Ning, Z., Li, Y., et al.: Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 41, 730–733 (2012). https://doi.org/10.1039/c1dt11641j

Gao, X., Zhu, Y., Yi, D., et al.: Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci Adv 4, eaat6378 (2018). https://doi.org/10.1126/sciadv.aat6378

Xue, Y.R., Guo, Y., Yi, Y.P., et al.: Self-catalyzed growth of Cu@graphdiyne core-shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 30, 858–866 (2016). https://doi.org/10.1016/j.nanoen.2016.09.005

Wang, S.S., Liu, H.B., Kan, X.N., et al.: Superlyophilicity-facilitated synthesis reaction at the microscale: ordered graphdiyne stripe arrays. Small 13, 1602265 (2017). https://doi.org/10.1002/smll.201602265

Zhou, J.Y., Gao, X., Liu, R., et al.: Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 137, 7596–7599 (2015). https://doi.org/10.1021/jacs.5b04057

Gao, X., Ren, H.Y., Zhou, J.Y., et al.: Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 29, 5777–5781 (2017). https://doi.org/10.1021/acs.chemmater.7b01838

Gao, X., Li, J., Du, R., et al.: Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 29, 1605308 (2017). https://doi.org/10.1002/adma.201605308

Li, J.Q., Xu, J., Xie, Z.Q., et al.: Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv. Mater. 30, 1800548 (2018). https://doi.org/10.1002/adma.201800548

Li, J., Gao, X., Liu, B., et al.: Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 138, 3954–3957 (2016). https://doi.org/10.1021/jacs.5b12758

Li, J., Gao, X., Jiang, X., et al.: Graphdiyne: a promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 7, 5209–5213 (2017). https://doi.org/10.1021/acscatal.7b01781

Si, H.Y., Deng, Q.X., Chen, L.C., et al.: Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting. J. Alloy. Compd. 794, 261–267 (2019). https://doi.org/10.1016/j.jallcom.2019.04.150

Berry, G.C., Bockstaller, M.R., Matyjaszewski, K.: Celebrating 100 years of polymer science. Prog. Polym. Sci. 100, 101193 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101193

Su, Z.B., Zhang, R.M., Yan, X.Y., et al.: The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: a molecular LEGO approach. Prog. Polym. Sci. 103, 101230 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101230

Wang, K., Wu, H.P., Meng, Y.N., et al.: Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2014). https://doi.org/10.1002/smll.201301991

Martin, C.R., Parthasarathy, R., Menon, V.: Template synthesis of electronically conductive polymers: preparation of thin films. Electrochim. Acta 39, 1309–1313 (1994). https://doi.org/10.1016/0013-4686(94)E0052-2

Cao, Y.Y., Mallouk, T.E.: Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays. Chem. Mater. 20, 5260–5265 (2008). https://doi.org/10.1021/cm801028a

Wei, Y., Hu, Q., Cao, Y.H., et al.: Polypyrrole nanotube arrays on carbonized cotton textile for aqueous sodium battery. Org. Electron. 46, 211–217 (2017). https://doi.org/10.1016/j.orgel.2017.04.008

Pan, L. ., Pu, L., Shi, Y., et al.: Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Adv. Mater. 19, 461–464 (2007). https://doi.org/10.1002/adma.200602073

Liang, L., Liu, J., Windisch Jr., C.F., et al.: Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 41, 3665–3668 (2002). https://doi.org/10.1002/1521-3773(20021004)41:193665:aid-anie3665%3e3.0.co;2-b

Wang, K., Huang, J.Y., Wei, Z.X.: Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062–8067 (2010). https://doi.org/10.1021/jp9113255

Li, M., Wei, Z.X., Jiang, L.: Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J. Mater. Chem. 18, 2276–2280 (2008). https://doi.org/10.1039/b800289d

Huang, J.Y., Wang, K., Wei, Z.X.: Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 20, 1117–1121 (2010). https://doi.org/10.1039/b919928d

Wang, Z.J., Jiao, L.S., You, T.Y., et al.: Electrochemical preparation of self-doped poly(o-aminobenzenesulfonic acid-co-aniline) microflowers. Electrochem. Commun. 7, 875–878 (2005). https://doi.org/10.1016/j.elecom.2005.06.004

Chiou, N.R., Lu, C., Guan, J., et al.: Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2, 354–357 (2007). https://doi.org/10.1038/nnano.2007.147

Wang, Y.G., Li, H.Q., Xia, Y.Y.: Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619–2623 (2006). https://doi.org/10.1002/adma.200600445

Xu, J.J., Wang, K., Zu, S.Z., et al.: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019–5026 (2010). https://doi.org/10.1021/nn1006539

Wang, K., Zhao, P., Zhou, X.M., et al.: Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J. Mater. Chem. 21, 16373–16378 (2011). https://doi.org/10.1039/c1jm13722k

Wang, K., Zou, W.J., Quan, B.G., et al.: An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 1, 1068–1072 (2011). https://doi.org/10.1002/aenm.201100488

Zou, W.J., Quan, B.G., Wang, K., et al.: Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing. Small 7, 3287–3291 (2011). https://doi.org/10.1002/smll.201100889

Wang, K., Wu, H.P., Meng, Y.N., et al.: Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384–8389 (2012). https://doi.org/10.1039/c2ee21643d

Meng, Y.N., Wang, K., Zhang, Y.J., et al.: Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 25, 6985–6990 (2013). https://doi.org/10.1002/adma.201303529

Wang, K., Meng, Q., Zhang, Y., et al.: High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25, 1494–1498 (2013). https://doi.org/10.1002/adma.201204598

Zhou, C.Q., Han, J., Guo, R.: Controllable synthesis of polyaniline multidimensional architectures: from plate-like structures to flower-like superstructures. Macromolecules 41, 6473–6479 (2008). https://doi.org/10.1021/ma800500u

Yang, X.W., Lin, Z.X., Zheng, J.X., et al.: Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 8, 8650–8657 (2016). https://doi.org/10.1039/c6nr00468g

Liaw, D.J., Wang, K.L., Huang, Y.C., et al.: Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 37, 907–974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005

Ding, Y.C., Hou, H.Q., Zhao, Y., et al.: Electrospun polyimide nanofibers and their applications. Prog. Polym. Sci. 61, 67–103 (2016). https://doi.org/10.1016/j.progpolymsci.2016.06.006

Inagaki, M., Ohta, N., Hishiyama, Y.: Aromatic polyimides as carbon precursors. Carbon 61, 1–21 (2013). https://doi.org/10.1016/j.carbon.2013.05.035

Lin, J., Peng, Z., Liu, Y., et al.: Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714

Xu, Z.X., Zhuang, X.D., Yang, C.Q., et al.: Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28, 1981–1987 (2016). https://doi.org/10.1002/adma.201505131

Gu, J.N., Du, Z.G., Zhang, C., et al.: Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv. Energy Mater. 6, 1600917 (2016). https://doi.org/10.1002/aenm.201600917

Wu, Q., Liu, J.Q., Yuan, C.P., et al.: Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries. Appl. Surf. Sci. 425, 1082–1088 (2017). https://doi.org/10.1016/j.apsusc.2017.07.118

Chen, C.W., Huang, H., Yu, Y.K., et al.: Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture. Chem. Eng. J. 353, 584–594 (2018). https://doi.org/10.1016/j.cej.2018.07.161

Zhu, C.X., Yang, B., Zhang, Y.N., et al.: High-level pyrrolic/pyridinic N-doped carbon nanoflakes from π-fused polyimide for anodic lithium storage. ChemistrySelect 2, 9007–9013 (2017). https://doi.org/10.1002/slct.201701552

Zhao, G.G., Zou, G.Q., Qiu, X.Q., et al.: Rose-like N-doped porous carbon for advanced sodium storage. Electrochim. Acta 240, 24–30 (2017). https://doi.org/10.1016/j.electacta.2017.04.057

Li, J., Luo, M., Ba, Z.H., et al.: Hierarchical multicarbonyl polyimide architectures as promising anode active materials for high-performance lithium/sodium ion batteries. J. Mater. Chem. A 7, 19112–19119 (2019). https://doi.org/10.1039/C9TA05552E

Xu, Z.X., Lu, D., Ma, L., et al.: Hierarchically ordered carbon tube-sheet superstructure via template-directed self-assembly of polyimide. Chem. Eng. J. 364, 201–207 (2019). https://doi.org/10.1016/j.cej.2019.01.151

Li, X.J., Chen, L., Huang, W., et al.: Green synthesis of polyimides and their CNT based nanohybrid shish-kebabs through reaction-induced crystallization of nylon-salt-type monomers in glycerol. Chin. J. Polym. Sci. 32, 1052–1059 (2014). https://doi.org/10.1007/s10118-014-1480-3

Ahmad, A., Wu, H.P., Guo, Y.F., et al.: A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Adv. 6, 33287–33294 (2016). https://doi.org/10.1039/C5RA27471K

Wang, Y.H., Cui, X.Q., Zhang, Y.Y., et al.: Achieving high aqueous energy storage via hydrogen-generation passivation. Adv. Mater. 28, 7626–7632 (2016). https://doi.org/10.1002/adma.201602583

Huang, G.X., Zhang, Y., Wang, L., et al.: Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 125, 595–604 (2017). https://doi.org/10.1016/j.carbon.2017.09.103

Chen, G.F., Cao, X.R., Wu, S.Q., et al.: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393

Chen, L., Chen, Z.H., Li, X., et al.: Dynamic imine chemistry assisted reaction induced hetero-epitaxial crystallization: novel approach towards aromatic polymer/CNT nanohybrid shish-kebabs and related hybrid crystalline structures. Polymer 54, 1739–1745 (2013). https://doi.org/10.1016/j.polymer.2013.01.046

Wu, H.P., Shevlin, S.A., Meng, Q.H., et al.: Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 26, 3338–3343 (2014). https://doi.org/10.1002/adma.201305452

Wang, Z.P., Ogata, H., Morimoto, S., et al.: Synthesis of carbon nanosheets from Kapton polyimide by microwave plasma treatment. Carbon 72, 421–424 (2014). https://doi.org/10.1016/j.carbon.2014.02.021

Duy, L.X., Peng, Z.W., Li, Y.L., et al.: Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036

Lee, H., Dellatore, S.M., Miller, W.M., et al.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007). https://doi.org/10.1126/science.1147241

Qu, K.G., Wang, Y.H., Vasileff, A., et al.: Polydopamine-inspired nanomaterials for energy conversion and storage. J. Mater. Chem. A 6, 21827–21846 (2018). https://doi.org/10.1039/c8ta05245j

Ma, F.X., Wu, H.B., Xia, B.Y., et al.: Hierarchical β-Mo2 C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. Engl. 54, 15395–15399 (2015). https://doi.org/10.1002/anie.201508715

Sun, L., Wang, C., Sun, Q., et al.: Self-assembly of hierarchical Ni-Mo-polydopamine microflowers and their conversion to a Ni-Mo2C/C composite for water splitting. Chem. - A Eur. J. 23, 4644–4650 (2017). https://doi.org/10.1002/chem.201605928

Huang, Y., Gong, Q.F., Song, X.N., et al.: Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10, 11337–11343 (2016). https://doi.org/10.1021/acsnano.6b06580

Chen, L., Jiang, H., Jiang, H.B., et al.: Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 7, 1602782 (2017). https://doi.org/10.1002/aenm.201602782

Wang, C.L., Sun, L.S., Zhang, F.F., et al.: Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small 13, 1701246 (2017). https://doi.org/10.1002/smll.201701246

Sun, L.S., Wang, C.L., Wang, X.X., et al.: Morphology evolution and control of Mo-polydopamine coordination complex from 2D single nanopetal to hierarchical microflowers. Small 14, 1800090 (2018). https://doi.org/10.1002/smll.201800090

Zhang, J., Zhou, L., Sun, Q.J., et al.: Metal-organic coordination strategy for obtaining metal-decorated Mo-based complexes: multi-dimensional structural evolution and high-rate lithium-ion battery applications. Chem. - A Eur. J. 25, 8813–8819 (2019). https://doi.org/10.1002/chem.201900972

Jiao, X.J., Liu, X.J., Wang, B.B., et al.: A controllable strategy for the self-assembly of WM nanocrystals/nitrogen-doped porous carbon superstructures (M = O, C, P, S, and Se) for sodium and potassium storage. J. Mater. Chem. A 8, 2047–2065 (2020). https://doi.org/10.1039/c9ta11312f

Wang, X.C., Maeda, K., Thomas, A., et al.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317

Niu, W.H., Yang, Y.: Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3, 2796–2815 (2018). https://doi.org/10.1021/acsenergylett.8b01594

Jun, Y.S., Lee, E.Z., Wang, X.C., et al.: From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661–3667 (2013). https://doi.org/10.1002/adfm.201203732

Jun, Y.S., Park, J., Lee, S.U., et al.: Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 11083–11087 (2013). https://doi.org/10.1002/anie.201304034

Shalom, M., Gimenez, S., Schipper, F., et al.: Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 53, 3654–3658 (2014). https://doi.org/10.1002/anie.201309415

Zhang, J.S., Zhang, M.W., Yang, C., et al.: Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014). https://doi.org/10.1002/adma.201400573

Zhu, Y.P., Ren, T.Z., Yuan, Z.Y.: Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces. 7, 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947

Ma, T.Y., Ran, J.R., Dai, S., et al.: Phosphorus-doped graphitic carbon nitrides grown In Situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54, 4646–4650 (2015). https://doi.org/10.1002/anie.201411125

Bian, S.W., Ma, Z., Song, W.G.: Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C 113, 8668–8672 (2009). https://doi.org/10.1021/jp810630k

Yan, Y.Z., Chen, L., Dai, H.J., et al.: Morphosynthesis of nanostructured polyazomethines and carbon through constitutional dynamic chemistry controlled reaction induced crystallization process. Polymer 53, 1611–1616 (2012). https://doi.org/10.1016/j.polymer.2012.02.025

Qiu, L.B., Jiang, Y., Sun, X.M., et al.: Surface-nanostructured cactus-like carbon microspheres for efficient photovoltaic devices. J. Mater. Chem. A 2, 15132–15138 (2014). https://doi.org/10.1039/c4ta02979h

Higuchi, R., Tanoue, R., Sakaguchi, K., et al.: Vertically standing nanowalls of pristine poly(azomethine) on a graphite by chemical liquid deposition. Polymer 54, 3452–3457 (2013). https://doi.org/10.1016/j.polymer.2013.04.065

Chen, S.C., Koshy, D.M., Tsao, Y., et al.: Highly tunable and facile synthesis of uniform carbon flower particles. J. Am. Chem. Soc. 140, 10297–10304 (2018). https://doi.org/10.1021/jacs.8b05825

Liu, Y.J., Liu, N., Yu, L.M., et al.: Design and synthesis of mint leaf-like polyacrylonitrile and carbon nanosheets for flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 362, 600–608 (2019). https://doi.org/10.1016/j.cej.2019.01.058

Zhang, K., Geissler, A., Chen, X.L., et al.: Polymeric flower-like microparticles from self-assembled cellulose stearoyl esters. ACS Macro Lett. 4, 214–219 (2015). https://doi.org/10.1021/mz500788e

Wang, Y.G., Tian, J., Deng, X., et al.: Polymeric flaky nanostructures from cellulose stearoyl esters for functional surfaces. Adv. Mater. Interfaces 3, 1600636 (2016). https://doi.org/10.1002/admi.201600636

Diercks, C.S., Yaghi, O.M.: The atom, the molecule, and the covalent organic framework. Science 355. https://doi.org/10.1126/science.aal1585. (2017). https://doi.org/10.1126/science.aal1585

Gao, X., Dong, Y., Li, S.W., et al.: MOFs and COFs for batteries and supercapacitors. Electrochem. Energy Rev. 3, 81–126 (2020). https://doi.org/10.1007/s41918-019-00055-1

Feng, L., Wang, K.Y., Day, G.S., et al.: The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 48, 4823–4853 (2019). https://doi.org/10.1039/c9cs00250b

Kim, S., Park, C., Lee, M., et al.: Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater. 27, 1700925 (2017). https://doi.org/10.1002/adfm.201700925

Sun, J.H., Klechikov, A., Moise, C., et al.: A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage. Angew. Chem. Int. Ed. 57, 1034–1038 (2018). https://doi.org/10.1002/anie.201710502

Hu, X.H., Jian, J.H., Fang, Z.S., et al.: Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019). https://doi.org/10.1016/j.ensm.2018.12.021

Wang, S., Zhang, Z.Y., Zhang, H.M., et al.: Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films. Matter 1, 1592–1605 (2019). https://doi.org/10.1016/j.matt.2019.08.019

Wang, S., Yang, Y.H., Liu, P.W., et al.: Core-shell and yolk-shell covalent organic framework nanostructures with size-selective permeability. Cell Rep. Phys. Sci. 1, 100062 (2020). https://doi.org/10.1016/j.xcrp.2020.100062

Zhao, R., Liang, Z.B., Zou, R.Q., et al.: Metal-organic frameworks for batteries. Joule 2, 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019

Liao, P.Q., Shen, J.Q., Zhang, J.P.: Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 373, 22–48 (2018). https://doi.org/10.1016/j.ccr.2017.09.001

Feng, L., Wang, K.Y., Powell, J., et al.: Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1, 801–824 (2019). https://doi.org/10.1016/j.matt.2019.08.022

Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M., et al.: A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013). https://doi.org/10.1038/nchem.1569

Zou, L., Kitta, M., Hong, J., et al.: Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31, e1900440 (2019). https://doi.org/10.1002/adma.201900440

Yang, Y., Mao, K.T., Gao, S.Q., et al.: O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018). https://doi.org/10.1002/adma.201801732

Guan, B.Y., Yu, L., (David) Lou, X.W.: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9, 3092–3096 (2016). https://doi.org/10.1039/c6ee02171a

Feng, L., Li, J.L., Day, G.S., et al.: Temperature-controlled evolution of nanoporous MOF crystallites into hierarchically porous superstructures. Chem 5, 1265–1274 (2019). https://doi.org/10.1016/j.chempr.2019.03.003

Feng, L., Wang, K.Y., Yan, T.H., et al.: Porous crystalline spherulite superstructures. Chem 6, 460–471 (2020). https://doi.org/10.1016/j.chempr.2019.12.001

Feng, L., Wang, K.Y., Yan, T.H., et al.: Seed-mediated evolution of hierarchical metal-organic framework quaternary superstructures. Chem Sci 11, 1643–1648 (2020). https://doi.org/10.1039/c9sc06064b

Zhang, Z.C., Chen, Y.F., He, S., et al.: Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. Int. Ed. 126, 12725–12729 (2014). https://doi.org/10.1002/ange.201406484

Yang, J., Zheng, C., Xiong, P.X., et al.: Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2, 19005–19010 (2014). https://doi.org/10.1039/c4ta04346d

Jiao, Y., Pei, J., Chen, D.H., et al.: Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c

Xia, H.C., Zhang, J.N., Yang, Z., et al.: 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano - Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6

Li, C., Hu, X.S., Lou, X.B., et al.: The organic-moiety-dominated Li + intercalation/deintercalation mechanism of a cobalt-based metal-organic framework. J. Mater. Chem. A 4, 16245–16251 (2016). https://doi.org/10.1039/C6TA06413B

Yan, Y., Gu, P., Zheng, S.S., et al.: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e

Zhu, Q.L., Xia, W., Akita, T., et al.: Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28, 6391–6398 (2016). https://doi.org/10.1002/adma.201600979

Zhu, Q.L., Xia, W., Zheng, L.R., et al.: Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2, 504–511 (2017). https://doi.org/10.1021/acsenergylett.6b00686

Wang, T.S., Kim, H.K., Liu, Y.J., et al.: Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra. J. Am. Chem. Soc. 140, 6130–6136 (2018). https://doi.org/10.1021/jacs.8b02411

Ma, T.Y., Dai, S., Jaroniec, M., et al.: Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014). https://doi.org/10.1021/ja5082553

Zhang, C., Xiao, J., Lv, X., et al.: Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 4, 16516–16523 (2016). https://doi.org/10.1039/c6ta06314d

Lu, X.F., Gu, L.F., Wang, J.W., et al.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017). https://doi.org/10.1002/adma.201604437

Zhou, D., Ni, J.F., Li, L.: Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy 57, 711–717 (2019). https://doi.org/10.1016/j.nanoen.2019.01.010

Zhang, G.H., Hou, S.C., Zhang, H., et al.: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405 (2015). https://doi.org/10.1002/adma.201405222

Zhou, J., Dou, Y.B., Zhou, A., et al.: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1602643 (2017). https://doi.org/10.1002/aenm.201602643

Fang, G.Z., Zhou, J., Liang, C.W., et al.: MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016). https://doi.org/10.1016/j.nanoen.2016.05.009

Duan, J., Chen, S., Zhao, C.: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). https://doi.org/10.1038/ncomms15341

Guan, C., Liu, X.M., Ren, W.N., et al.: Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7, 1602391 (2017). https://doi.org/10.1002/aenm.201602391

Ji, D.X., Fan, L., Li, L.L., et al.: Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable Zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267

Ji, D.X., Fan, L., Tao, L., et al.: The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem. Int. Ed. 58, 13840–13844 (2019). https://doi.org/10.1002/anie.201908736

Wang, X., Liao, Z.Q., Fu, Y.B., et al.: Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater. 26, 157–164 (2020). https://doi.org/10.1016/j.ensm.2019.12.043

Zhou, T., Shen, J.D., Wang, Z.S., et al.: Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv. Funct. Mater. 30, 1909159 (2020). https://doi.org/10.1002/adfm.201909159

Falcaro, P., Okada, K., Hara, T., et al.: Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342–348 (2017). https://doi.org/10.1038/nmat4815

Cai, G.R., Zhang, W., Jiao, L., et al.: Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2, 791–802 (2017). https://doi.org/10.1016/j.chempr.2017.04.016

Zhao, Y.B., Kornienko, N., Liu, Z., et al.: Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J. Am. Chem. Soc. 137, 2199–2202 (2015). https://doi.org/10.1021/ja512951e

Li, Z.H., Shao, M.F., Zhou, L., et al.: Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 28, 2337–2344 (2016). https://doi.org/10.1002/adma.201505086

Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23

Wang, Q., Yan, J., Wang, Y.B., et al.: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67, 119–127 (2014). https://doi.org/10.1016/j.carbon.2013.09.070

Zhou, L., Huang, T., Yu, A.S.: Three-dimensional flower-shaped activated porous carbon/sulfur composites as cathode materials for lithium–sulfur batteries. ACS Sustainable Chem. Eng. 2, 2442–2447 (2014). https://doi.org/10.1021/sc500459c

Shao, J.Q., Song, M.Y., Wu, G., et al.: 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in situ coating. Energy Storage Mater. 13, 57–65 (2018). https://doi.org/10.1016/j.ensm.2017.12.023

Guo, D.Y., Chen, X.A., Wei, H.F., et al.: Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. J. Mater. Chem. A 5, 6245–6256 (2017). https://doi.org/10.1039/c7ta00335h

Ding, F., Yu, Z.S., Chen, X., et al.: High-performance supercapacitors based on reduced graphene oxide -wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions. Electrochim. Acta 306, 549–557 (2019). https://doi.org/10.1016/j.electacta.2019.03.155

Guo, X.F., Liang, J.Y., Chen, S.L., et al.: Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J. Mater. Chem. A 2, 16884–16891 (2014)

Liang, J.Y., Wang, C.C., Lu, S.Y.: Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. J. Mater. Chem. A 3, 24453–24462 (2015). https://doi.org/10.1039/c5ta08007j

Zheng, Z.M., Zhang, X., Pei, F., et al.: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3, 19800–19806 (2015). https://doi.org/10.1039/c5ta05183e

Zhu, J.X., Sakaushi, K., Clavel, G., et al.: A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 137, 5480–5485 (2015). https://doi.org/10.1021/jacs.5b01072

Xia, X.H., Zhang, Y.Q., Fan, Z.X., et al.: Novel Metal@Carbon spheres core-shell arrays by controlled self-assembly of carbon nanospheres: a stable and flexible supercapacitor electrode. Adv. Energy Mater. 5, 1401709 (2015). https://doi.org/10.1002/aenm.201401709

Zhang, G.H., Song, Y.A., Zhang, H., et al.: Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv. Funct. Mater. 26, 3012–3020 (2016). https://doi.org/10.1002/adfm.201505226

Liu, H.J., Wang, X.M., Cui, W.J., et al.: Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J. Mater. Chem. 20, 4223–4230 (2010). https://doi.org/10.1039/b925776d

Li, M., Lu, J., Chen, Z.W., et al.: 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561

Issues and challenges facing rechargeable lithium batteries: M Tarascon, J., Armand, M. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

Goriparti, S., Miele, E., De Angelis, F., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103

Dahn, J.R., Zheng, T., Liu, Y., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995). https://doi.org/10.1126/science.270.5236.590

Zhao, Y., Wang, L.P., Sougrati, M.T., et al.: A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7, 1601424 (2017). https://doi.org/10.1002/aenm.201601424

Wang, X.L., Li, G., Seo, M.H., et al.: Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 9551–9558 (2017). https://doi.org/10.1021/acsami.6b12080

Luo, D., Deng, Y.P., Wang, X.L., et al.: Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage. ACS Nano 11, 11521–11530 (2017). https://doi.org/10.1021/acsnano.7b06296

Wang, X.L., Li, G., Seo, M.H., et al.: Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 5, 1501106 (2015). https://doi.org/10.1002/aenm.201501106

Wang, X.L., Li, G., Hassan, F.M., et al.: Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. J. Mater. Chem. A 3, 3962–3967 (2015). https://doi.org/10.1039/c4ta06249c

Feng, K., Ahn, W., Lui, G., et al.: Implementing an in situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 19, 187–197 (2016). https://doi.org/10.1016/j.nanoen.2015.10.025

Lui, G., Li, G., Wang, X.L., et al.: Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries. Nano Energy 24, 72–77 (2016). https://doi.org/10.1016/j.nanoen.2016.03.019

Hassan, F.M., Batmaz, R., Li, J., et al.: Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 6, 8597 (2015). https://doi.org/10.1038/ncomms9597

Tjandra, R., Li, G., Wang, X.L., et al.: Flexible high performance lithium ion battery electrode based on a free-standing TiO2 nanocrystals/carbon cloth composite. RSC Adv. 6, 35479–35485 (2016). https://doi.org/10.1039/c6ra03262a

Hu, C.G., Lv, L., Xue, J.L., et al.: Branched graphene nanocapsules for anode material of lithium-ion batteries. Chem. Mater. 27, 5253–5260 (2015). https://doi.org/10.1021/acs.chemmater.5b01398

Xiao, X.C., Liu, P., Wang, J.S., et al.: Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 13, 209–212 (2011). https://doi.org/10.1016/j.elecom.2010.12.016

Xu, Z.M., Lv, X., Li, J., et al.: A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6, 25594–25600 (2016). https://doi.org/10.1039/c6ra01870j

Wang, K., Wang, N., He, J.J., et al.: Graphdiyne nanowalls as anode for lithium-ion batteries and capacitors exhibit superior cyclic stability. Electrochim. Acta 253, 506–516 (2017). https://doi.org/10.1016/j.electacta.2017.09.101

Yuan, Y., Chen, Z.W., Yu, H.X., et al.: Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027

Ma, C.C., Shao, X.H., Cao, D.P.: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22, 8911–8915 (2012). https://doi.org/10.1039/c2jm00166g

Chen, Z., Du, Y., Zhang, Z., et al.: A facile strategy to prepare (N, Ni, P) tri-doped echinus-like porous carbon spheres as advanced anode for lithium ion batteries. Nanotechnology 30, 495403 (2019). https://doi.org/10.1088/1361-6528/ab3f07

Ashuri, M., He, Q., Shaw, L.L.: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8, 74–103 (2016). https://doi.org/10.1039/c5nr05116a

Magasinski, A., Dixon, P., Hertzberg, B., et al.: Erratum: high-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010). https://doi.org/10.1038/nmat2749

Jia, H.P., Li, X.L., Song, J.H., et al.: Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11, 1474 (2020). https://doi.org/10.1038/s41467-020-15217-9

Wang, W., Epur, R., Kumta, P.N.: Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery. Electrochem. Commun. 13, 429–432 (2011). https://doi.org/10.1016/j.elecom.2011.02.012

Guo, Y.Y., Zeng, X.Q., Zhang, Y., et al.: Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 17172–17177 (2017). https://doi.org/10.1021/acsami.7b04561

Wang, H., Wu, X., Qi, X.J., et al.: Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 103, 32–37 (2018). https://doi.org/10.1016/j.materresbull.2018.03.018

Yang, C.L., Jiang, Y., Liu, X.W., et al.: Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries. J. Mater. Chem. A 4, 18711–18716 (2016). https://doi.org/10.1039/c6ta08681k

Cai, H.Y., Han, K., Jiang, H., et al.: Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. J. Phys. Chem. Solids 109, 9–17 (2017). https://doi.org/10.1016/j.jpcs.2017.05.009

Li, N., Song, H.W., Cui, H., et al.: Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 3, 102–112 (2014). https://doi.org/10.1016/j.nanoen.2013.10.014

Ren, G.F., Hoque, M.N.F., Liu, J.W., et al.: Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21, 162–171 (2016). https://doi.org/10.1016/j.nanoen.2016.01.010

Chen, Y.M., Yu, L., Lou, X.W.D.: Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55, 5990–5993 (2016). https://doi.org/10.1002/anie.201600133

Li, N., Sonsg, H., Cui, H., et al.: SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage. Electrochim. Acta 130, 670–678 (2014). https://doi.org/10.1016/j.electacta.2014.03.081

Hu, L.R., Ren, Y.M., Yang, H.X., et al.: Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces. 6, 14644–14652 (2014). https://doi.org/10.1021/am503995s

Wang, Y., Chen, B., Seo, D.H., et al.: MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 8, e268 (2016). https://doi.org/10.1038/am.2016.44

Chen, L., Yang, W.J., Wang, J.B., et al.: Hierarchical cobalt-based metal-organic framework for high-performance lithium-ion batteries. Chem. Eur. J. 24, 13362–13367 (2018). https://doi.org/10.1002/chem.201802629

Gan, Q.M., He, H.N., Zhao, K.M., et al.: Morphology-dependent electrochemical performance of Ni-1, 3, 5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries. J. Colloid Interface Sci. 530, 127–136 (2018). https://doi.org/10.1016/j.jcis.2018.06.057

Wu, Z.Z., Xie, J., Xu, Z.J., et al.: Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J. Mater. Chem. A 7, 4259–4290 (2019). https://doi.org/10.1039/c8ta11994e

Ning, Y.Q., Lou, X.B., Shen, M., et al.: Mesoporous cobalt 2, 5-thiophenedicarboxylic coordination polymer for high performance Na-ion batteries. Mater. Lett. 197, 245–248 (2017). https://doi.org/10.1016/j.matlet.2017.01.126

Lou, X.B., Hu, X.S., Li, C., et al.: Room-temperature synthesis of a cobalt 2, 3, 5, 6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries. New J. Chem. 41, 1813–1819 (2017). https://doi.org/10.1039/C6NJ03165J

Liang, Y., Jing, Y., Gheytani, S., et al.: Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919

Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085

Peng, H.L., Yu, Q.C., Wang, S.P., et al.: Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes. Adv. Sci. 6, 1900431 (2019). https://doi.org/10.1002/advs.201900431

Muench, S., Wild, A., Friebe, C., et al.: Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016). https://doi.org/10.1021/acs.chemrev.6b00070

Lu, Y., Chen, J.: Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9

Häupler, B., Wild, A., Schubert, U.S.: Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5, 1402034 (2015). https://doi.org/10.1002/aenm.201402034

Song, Z.P., Zhan, H., Zhou, Y.H.: Polyimides: promising energy-storage materials. Angew. Chem. 122, 8622–8626 (2010). https://doi.org/10.1002/ange.201002439

Song, Z.P., Xu, T., Gordin, M.L., et al.: Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 12, 2205–2211 (2012). https://doi.org/10.1021/nl2039666

Meng, Y.N., Wu, H.P., Zhang, Y.J., et al.: A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries. J. Mater. Chem. A 2, 10842–10846 (2014). https://doi.org/10.1039/c4ta00364k

Ba, Z.H., Wang, Z.X., Luo, M., et al.: Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces. 12, 807–817 (2020). https://doi.org/10.1021/acsami.9b18422

Peng, H.L., Wang, S.P., Kim, M., et al.: Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance. Energy Storage Mater. 25, 313–323 (2020). https://doi.org/10.1016/j.ensm.2019.10.007

Wang, F., Fan, X.L., Gao, T., et al.: High-voltage aqueous magnesium ion batteries. ACS Central Sci. 3, 1121–1128 (2017). https://doi.org/10.1021/acscentsci.7b00361

Chen, L., Bao, J.L., Dong, X., et al.: Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040

Zhang, G.F., Xu, Z.X., Liu, P., et al.: A facile in situ polymerization strategy towards polyimide/carbon black composites as high performance lithium ion battery cathodes. Electrochim. Acta 260, 598–605 (2018). https://doi.org/10.1016/j.electacta.2017.12.075

Wu, D.Q., Zhang, G.F., Lu, D., et al.: Perylene diimide-diamine/carbon black composites as high performance lithium/sodium ion battery cathodes. J. Mater. Chem. A 6, 13613–13618 (2018). https://doi.org/10.1039/C8TA03186J

Gheytani, S., Liang, Y.L., Wu, F.L., et al.: An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465

Lu, D., Liu, H.Q., Huang, T., et al.: Magnesium ion based organic secondary batteries. J. Mater. Chem. A 6, 17297–17302 (2018). https://doi.org/10.1039/c8ta05230a

Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

Ji, X., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

Zhang, L.L., Wang, Y.J., Niu, Z.Q., et al.: Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 141, 400–416 (2019). https://doi.org/10.1016/j.carbon.2018.09.067

Li, M., Zhang, Y.N., Wang, X.L., et al.: Gas Pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26, 8408–8417 (2016). https://doi.org/10.1002/adfm.201603241

Peng, H.J., Liang, J.Y., Zhu, L., et al.: Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. ACS Nano 8, 11280–11289 (2014). https://doi.org/10.1021/nn503985s

Moreno, N., Caballero, A., Morales, J., et al.: Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode. Mater. Chem. Phys. 180, 82–88 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.044

Zheng, Z.M., Guo, H.C., Pei, F., et al.: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 26, 8952–8959 (2016). https://doi.org/10.1002/adfm.201601897

Li, B., Li, S.M., Liu, J.H., et al.: Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 15, 3073–3079 (2015). https://doi.org/10.1021/acs.nanolett.5b00064

Li, G., Wang, X.L., Seo, M.H., et al.: Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9, 705 (2018). https://doi.org/10.1038/s41467-018-03116-z

Wang, X.L., Li, G., Li, J.D., et al.: Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries. Energy Environ. Sci. 9, 2533–2538 (2016). https://doi.org/10.1039/c6ee00194g

Zhang, Z., Luo, D., Li, G.R., et al.: Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3, 920–934 (2020). https://doi.org/10.1016/j.matt.2020.06.002

Zhou, J., Liu, X., Zhou, J., et al.: Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries. Nanoscale Horiz 4, 182–189 (2019). https://doi.org/10.1039/c8nh00289d

Luo, D., Zhang, Z., Li, G.R., et al.: Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5−x nanocluster toward superior Li-S performance. ACS Nano 14, 4849–4860 (2020). https://doi.org/10.1021/acsnano.0c00799

Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

Liu, S., Wang, A.X., Li, Q.Q., et al.: Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2, 184–193 (2018). https://doi.org/10.1016/j.joule.2017.11.004

Hu, Z.L., Li, Z.Z., Xia, Z., et al.: PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Mater. 22, 29–39 (2019). https://doi.org/10.1016/j.ensm.2018.12.020

Liu, F.F., Xu, R., Hu, Z.X., et al.: Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small 15, 1803734 (2019). https://doi.org/10.1002/smll.201803734

An, Y.L., Tian, Y., Li, Y., et al.: Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 400, 125843 (2020). https://doi.org/10.1016/j.cej.2020.125843

Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

Zhang, W., Liu, Y., Guo, Z.: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412

Wang, X.L., Li, G., Hassan, F.M., et al.: Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy 15, 746–754 (2015). https://doi.org/10.1016/j.nanoen.2015.05.038

Wang, K., Wang, N., He, J.J., et al.: Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. ACS Appl. Mater. Interfaces. 9, 40604–40613 (2017). https://doi.org/10.1021/acsami.7b11420

Qiu, W.D., Xiao, H.B., Li, Y., et al.: Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 15, 1901285 (2019). https://doi.org/10.1002/smll.201901285

Huang, H., Xu, R., Feng, Y., et al.: Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32, 1904320 (2020). https://doi.org/10.1002/adma.201904320

Xiong, P.X., Bai, P.X., Tu, S.B., et al.: Red phosphorus Nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 14, 1802140 (2018). https://doi.org/10.1002/smll.201802140

Li, G., Luo, D., Wang, X.L., et al.: Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene. Adv. Funct. Mater. 27, 1702562 (2017). https://doi.org/10.1002/adfm.201702562

Wu, X., Chen, Y.L., Xing, Z., et al.: Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9, 1900343 (2019). https://doi.org/10.1002/aenm.201900343

Zhao, Q.L., Gaddam, R.R., Dongfang, Y., et al.: Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta 265, 702–708 (2018). https://doi.org/10.1016/j.electacta.2018.01.208

Blanc, L.E., Kundu, D.P., Nazar, L.F.: Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002

Chao, D., Zhou, W., Xie, F., et al.: Roadmap for advanced aqueous batteries: From design of materials to applications. Sci Adv 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098

Fang, G.Z., Zhou, J., Pan, A.Q., et al.: Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426

Cui, J., Guo, Z.W., Yi, J., et al.: Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives. Chemsuschem 13, 2160–2185 (2020). https://doi.org/10.1002/cssc.201903265

Poizot, P., Gaubicher, J., Renault, S., et al.: Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020). https://doi.org/10.1021/acs.chemrev.9b00482

Shi, H.Y., Ye, Y.J., Liu, K., et al.: A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359–16363 (2018). https://doi.org/10.1002/anie.201808886

Shin, J., Lee, J., Park, Y., et al.: Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci 11, 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a

Wu, T.H., Zhang, Y., Althouse, Z.D., et al.: Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 6, 100032 (2019). https://doi.org/10.1016/j.mtnano.2019.100032

Simon, P., Gogotsi, Y.: Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z

Jiang, H., Lee, P.S., Li, C.Z.: 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41–53 (2013). https://doi.org/10.1039/C2EE23284G

Zhang, J.N., Zhang, X.L., Zhou, Y.C., et al.: Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2, 1525–1533 (2014). https://doi.org/10.1021/sc500221s

Wang, S.P., Han, C.L., Wang, J., et al.: Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem. Mater. 26, 6872–6877 (2014). https://doi.org/10.1021/cm503669v

Li, C.X., Li, Z.L., Cheng, Z.H., et al.: Functional carbon nanomesh clusters. Adv. Funct. Mater. 27, 1701514 (2017). https://doi.org/10.1002/adfm.201701514

Liu, X.F., Mei, P., Lei, S., et al.: Scalable polymerization approach to tailoring morphologies of polyimide-derived N-doped carbons for high-performance supercapacitors. Energy Technol. 8, 1901013 (2020). https://doi.org/10.1002/ente.201901013

Seo, D.H., Han, Z.J., Kumar, S., et al.: Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 3, 1316–1323 (2013). https://doi.org/10.1002/aenm.201300431

Bo, Z., Zhu, W.G., Ma, W., et al.: Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799–5806 (2013). https://doi.org/10.1002/adma.201301794

Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010). https://doi.org/10.1126/science.1194372

Bo, Z., Xu, C.X., Yang, H.C., et al.: Hierarchical, vertically-oriented carbon nanowall foam supercapacitor using room temperature ionic liquid mixture for AC line filtering with ultrahigh energy density. ChemElectroChem 6, 2167–2173 (2019). https://doi.org/10.1002/celc.201801825

Li, W.Y., Azam, S., Dai, G.Z., et al.: Prussian blue based vertical graphene 3D structures for high frequency electrochemical capacitors. Energy Storage Mater. 32, 30–36 (2020). https://doi.org/10.1016/j.ensm.2020.07.016

Ren, G.F., Li, S.Q., Fan, Z.X., et al.: Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes. J. Power Sources 325, 152–160 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.021

Xiong, G., He, P., Lyu, Z., et al.: Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 9, 790 (2018). https://doi.org/10.1038/s41467-018-03112-3

Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38, 2397–2409 (2009). https://doi.org/10.1039/b816681c

Han, Y.Q., Dai, L.M.: Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 220, 1800355 (2019). https://doi.org/10.1002/macp.201800355

Wang, Z.L., Guo, R., Li, G.R., et al.: Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. J. Mater. Chem. 22, 2401–2404 (2012). https://doi.org/10.1039/C2JM15070K

Xiong, S.X., Yang, F., Jiang, H., et al.: Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 85, 235–242 (2012). https://doi.org/10.1016/j.electacta.2012.08.056

Malik, R., Zhang, L., McConnell, C., et al.: Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116, 579–590 (2017). https://doi.org/10.1016/j.carbon.2017.02.036

Liu, J.H., Xu, X.Y., Lu, W.B., et al.: A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochim. Acta 283, 366–373 (2018). https://doi.org/10.1016/j.electacta.2018.06.158

Wang, X.N., Wei, H.L., Liu, X.Z., et al.: Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode. Nanotechnology 30, 325401 (2019). https://doi.org/10.1088/1361-6528/ab156d

Xiong, G.P., Meng, C.Z., Reifenberger, R.G., et al.: Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv. Energy Mater. 4, 1300515 (2014). https://doi.org/10.1002/aenm.201300515

Qu, Y., Lu, C.B., Su, Y.Z., et al.: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon 127, 77–84 (2018). https://doi.org/10.1016/j.carbon.2017.10.088

Wang, Z.L., Guo, R., Ding, L.X., et al.: Controllable template-assisted electrodeposition of single-and multi-walled nanotube arrays for electrochemical energy storage. Sci Rep 3, 1204 (2013). https://doi.org/10.1038/srep01204

Zhang, H., Cao, G.P., Wang, Z.Y., et al.: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668 (2008). https://doi.org/10.1021/nl800925j

Zhang, L., Holt, C.M.B., Luber, E.J., et al.: High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J. Phys. Chem. C 115, 24381–24393 (2011). https://doi.org/10.1021/jp205052f

Zhu, C.R., Yang, P.H., Chao, D.L., et al.: All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838

Xiong, G.P., Hembram, K.P.S.S., Reifenberger, R.G., et al.: MnO2-coated graphitic petals for supercapacitor electrodes. J. Power Sources 227, 254–259 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.040

Zhang, Y.Z., Cheng, T., Wang, Y., et al.: A simple approach to boost capacitance: flexible supercapacitors based on manganese Oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016). https://doi.org/10.1002/adma.201600319

Huang, J., Peng, Z.Y., Xiao, Y.B., et al.: Hierarchical nanosheets/walls structured carbon-coated porous vanadium nitride anodes enable wide-voltage-window aqueous asymmetric supercapacitors with high energy density. Adv. Sci. 6, 1900550 (2019). https://doi.org/10.1002/advs.201900550

Wang, H.W., Zhu, C.R., Chao, D.L., et al.: Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093

Han, X.Q., Han, P.X., Yao, J.H., et al.: Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. Electrochim. Acta 196, 603–610 (2016). https://doi.org/10.1016/j.electacta.2016.02.185

Jiang, J.M., Nie, P., Ding, B., et al.: Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. J. Mater. Chem. A 5, 23283–23291 (2017). https://doi.org/10.1039/C7TA05972H

Jiang, J.M., Zhang, Y.D., An, Y.F., et al.: Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods 3, 1900081 (2019). https://doi.org/10.1002/smtd.201900081

Zhang, Y.D., Nie, P., Xu, C.Y., et al.: High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochim. Acta 268, 512–519 (2018). https://doi.org/10.1016/j.electacta.2018.02.125

Zhao, Q.L., Dongfang, Y., Whittaker, A.K., et al.: A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. J. Power Sources 396, 12–18 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.010

Zhao, Q.L., Dongfang, Y., Zhang, C., et al.: Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl. Mater. Interfaces. 10, 43730–43739 (2018). https://doi.org/10.1021/acsami.8b17171

Liu, M.Q., Chang, L.M., Wang, J., et al.: Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J. Power Sources 469, 228415 (2020). https://doi.org/10.1016/j.jpowsour.2020.228415

Xu, D.M., Chao, D.L., Wang, H.W., et al.: Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018). https://doi.org/10.1002/aenm.201702769

Beidaghi, M., Gogotsi, Y.: Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/C3EE43526A

Zhang, P., Wang, F., Yu, M., et al.: Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c

Wang, X.F., Jiang, K., Shen, G.Z.: Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater. Today 18, 265–272 (2015). https://doi.org/10.1016/j.mattod.2015.01.002

Xiong, G.P., He, P.G., Huang, B.Y., et al.: Graphene nanopetal wire supercapacitors with high energy density and thermal durability. Nano Energy 38, 127–136 (2017). https://doi.org/10.1016/j.nanoen.2017.05.050

He, Y.H., Tan, Q., Lu, L.L., et al.: Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2, 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9

Li, Y.H., Li, Q.Y., Wang, H.Q., et al.: Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2, 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4

Paul, R., Dai, Q.B., Hu, C.G., et al.: Ten years of carbon-based metal-free electrocatalysts. Carbon Energy 1, 19–31 (2019). https://doi.org/10.1002/cey2.5

Guo, Q.H., Zhao, D., Liu, S.W., et al.: Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim. Acta 138, 318–324 (2014). https://doi.org/10.1016/j.electacta.2014.06.120

She, X., Yang, D., Jing, D., et al.: Nitrogen-doped one-dimensional (1D) macroporous carbonaceous nanotube arrays and their application in electrocatalytic oxygen reduction reactions. Nanoscale 6, 11057–11061 (2014). https://doi.org/10.1039/c4nr03340j

Yu, D.S., Xue, Y.H., Dai, L.M.: Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012). https://doi.org/10.1021/jz3011833

Zhu, J.L., Jiang, S.P., Wang, R.H., et al.: One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2, 15448–15453 (2014). https://doi.org/10.1039/c4ta02427c

Li, H.B., Kang, W.J., Wang, L., et al.: Synthesis of three-dimensional flowerlike nitrogen-doped carbons by a copyrolysis route and the effect of nitrogen species on the electrocatalytic activity in oxygen reduction reaction. Carbon 54, 249–257 (2013). https://doi.org/10.1016/j.carbon.2012.11.036

Guo, D., Wei, H., Chen, X., et al.: 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries. J. Mater. Chem. A 5, 18193–18206 (2017). https://doi.org/10.1039/C7TA04728B

Zhang, S.H., Xia, W., Yang, Q., et al.: Core-shell motif construction: highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 396, 125154 (2020). https://doi.org/10.1016/j.cej.2020.125154

Chen, L., Xu, Z.X., Han, W.J., et al.: Bimetallic CoNi alloy nanoparticles embedded in pomegranate-like nitrogen-doped carbon spheres for electrocatalytic oxygen reduction and evolution. ACS Appl. Nano Mater. 3, 1354–1362 (2020). https://doi.org/10.1021/acsanm.9b02201

Li, G., Wang, X.L., Fu, J., et al.: Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries. Angew. Chem. Int. Ed. 55, 4977–4982 (2016). https://doi.org/10.1002/anie.201600750

Wang, X.Q., Li, Z.J., Qu, Y.T., et al.: Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5, 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002

Wang, Y.J., Fang, B.Z., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3

Seo, M.H., Park, M.G., Lee, D.U., et al.: Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries. Appl. Catal. B: Environ. 239, 677–687 (2018). https://doi.org/10.1016/j.apcatb.2018.06.006

Liu, G.H., Li, J.D., Fu, J., et al.: An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 31, 1806761 (2019). https://doi.org/10.1002/adma.201806761

Hou, C.C., Zou, L.L., Xu, Q.: A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 31, 1904689 (2019). https://doi.org/10.1002/adma.201904689

Zhou, J., Dou, Y.B., Zhou, A., et al.: Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3, 1655–1661 (2018). https://doi.org/10.1021/acsenergylett.8b00809

Yang, Y., Zhang, H.L., Lin, Z.H., et al.: A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6, 2429–2434 (2013). https://doi.org/10.1039/c3ee41485j

Jia, J., Seitz, L.C., Benck, J.D., et al.: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237

Li, G., Wang, X.L., Seo, M.H., et al.: Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. J. Mater. Chem. A 5, 10895–10901 (2017). https://doi.org/10.1039/c7ta02745a

Sun, H.M., Yan, Z.H., Liu, F.M., et al.: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, 1806326 (2020). https://doi.org/10.1002/adma.201806326

Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

Zhuang, Z.C., Huang, J.Z., Li, Y., et al.: The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 6, 3570–3589 (2019). https://doi.org/10.1002/celc.201900143

Smith, A.J., Chang, Y.H., Raidongia, K., et al.: Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production. Adv. Energy Mater. 4, 1400398 (2014). https://doi.org/10.1002/aenm.201400398

Xu, Z.X., Zhang, G.F., Lu, C.B., et al.: Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution. J. Mater. Chem. A 6, 18833–18838 (2018). https://doi.org/10.1039/C8TA06278A

Fan, X.J., Zhou, H.Q., Guo, X.: WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 9, 5125–5134 (2015). https://doi.org/10.1021/acsnano.5b00425

Fan, X.J., Peng, Z.W., Ye, R.Q., et al.: M3C (M: fe, co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 7407–7418 (2015). https://doi.org/10.1021/acsnano.5b02420

Yan, H.J., Xie, Y., Wu, A.P., et al.: Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31, 1901174 (2019). https://doi.org/10.1002/adma.201901174

Manjunatha, R., Karajić, A., Liu, M.M., et al.: A review of composite/hybrid electrocatalysts and photocatalysts for nitrogen reduction reactions: advanced materials, mechanisms, challenges and perspectives. Electrochem. Energy Rev. 3, 506–540 (2020). https://doi.org/10.1007/s41918-020-00069-0

Guo, C.X., Ran, J.R., Vasileff, A., et al.: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/C7EE02220D

Lin, Y.X., Zhang, S.N., Xue, Z.H., et al.: Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 10, 4380 (2019). https://doi.org/10.1038/s41467-019-12312-4

Hisatomi, T., Kubota, J., Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d

Moon, J., Sim, U., Kim, D.J., et al.: Hierarchical carbon-silicon nanowire heterostructures for the hydrogen evolution reaction. Nanoscale 10, 13936–13941 (2018). https://doi.org/10.1039/c8nr02262c

Carraro, F., Calvillo, L., Cattelan, M., et al.: Fast one-pot synthesis of MoS2/crumpled graphene p-n nanonjunctions for enhanced photoelectrochemical hydrogen production. ACS Appl. Mater. Interfaces. 7, 25685–25692 (2015). https://doi.org/10.1021/acsami.5b06668

Han, Y.Y., Lu, X.L., Tang, S.F., et al.: Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 8, 1702992 (2018). https://doi.org/10.1002/aenm.201702992

Gao, H.H., Cao, R.Y., Zhang, S.W., et al.: Three-dimensional hierarchical g-C3N4 architectures assembled by ultrathin self-doped nanosheets: extremely facile hexamethylenetetramine activation and superior photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces. 11, 2050–2059 (2019). https://doi.org/10.1021/acsami.8b17757