3D Face Reconstruction in Deep Learning Era: A Survey

Sahil Sharma1, Vijay Kumar2
1Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
2Computer Science and Engineering Department, National Institute of Technology, Hamirpur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zollhöfer M, Thies J, Garrido P et al (2018) State of the art on monocular 3D face reconstruction, tracking, and applications. Comput Graph Forum 37(2):523–550. https://doi.org/10.1111/cgf.13382

Sharma S, Kumar V (2020) Voxel-based 3D face reconstruction and its application to face recognition using sequential deep learning. Multimed Tools Appl 79:17303–17330. https://doi.org/10.1007/s11042-020-08688-x

Cloud Vision API | Google Cloud. https://cloud.google.com/vision/docs/face-tutorial. Accessed 12 Jan 2021

AWS Marketplace: Deep Vision API. https://aws.amazon.com/marketplace/pp/Deep-Vision-AI-Inc-Deep-Vision-API/B07JHXVZ4M. Accessed 12 Jan 2021

Computer Vision | Microsoft Azure. https://azure.microsoft.com/en-in/services/cognitive-services/computer-vision/. Accessed 12 Jan 2021

Koujan MR, Dochev N, Roussos A (2020) Real-Time Monocular 4D Face Reconstruction using the LSFM models. preprint arXiv:2006.10499.

Behzad M, Vo N, Li X, Zhao G (2021) Towards reading beyond faces for sparsity-aware 4D affect recognition. Neurocomputing 458:297–307

Sharma S, Kumar V (2020) Voxel-based 3D occlusion-invariant face recognition using game theory and simulated annealing. Multimedia Tools and Applications 79(35):26517–26547

Sharma S, Kumar V (2021) 3D landmark‐based face restoration for recognition using variational autoencoder and triplet loss. IET Biometrics 10(1):87–98. https://doi.org/10.1049/bme2.12005

Tu X, Zhao J, Xie M et al (2020) 3D face reconstruction from a single image assisted by 2D face images in the Wild. IEEE Trans Multimed 23:1160–1172. https://doi.org/10.1109/TMM.2020.2993962

Bulat A, Tzimiropoulos G How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks). In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1021–1030

Zhu X, Lei Z, Liu X, et al (2016) Face alignment across large poses: a 3D solution. computer vision and pattern recognition (CVPR), pp 146–155

Gu S, Bao J, Yang H, et al (2019) Mask-guided portrait editing with conditional gans. In: Proc IEEE comput soc conf comput vis pattern recognit 2019-June:3431–3440. doi: https://doi.org/10.1109/CVPR.2019.00355

Guo Y, Wang H, Hu Q et al (2020) Deep learning for 3D point clouds: A survey. IEEE Trans Pattern Anal Mach Intell 43(12):4338–4364. https://doi.org/10.1109/tpami.2020.3005434

Ye M, Shen J, Lin G et al (2021) Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell 8828:1–1. https://doi.org/10.1109/tpami.2021.3054775

Tran L, Liu X Nonlinear 3D Face Morphable Model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7346–7355

Egger B, Smith WAP, Tewari A et al (2020) 3D morphable face models—past, present, and future. ACM Trans Graph 39(5):1–38. https://doi.org/10.1145/3395208

Blanz V, Vetter T (1999) Face recognition based on fitting a 3D morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074

Booth J, Roussos A, Ponniah A et al (2018) Large scale 3D morphable models. Int J Comput Vis 126:233–254. https://doi.org/10.1007/s11263-017-1009-7

Cao C, Weng Y, Zhou S et al (2014) FaceWarehouse: A 3D facial expression database for visual computing. IEEE Trans Vis Comput Graph 20:413–425. https://doi.org/10.1109/TVCG.2013.249

Gerig T, Morel-Forster A, Blumer C, et al (2018) Morphable face models - An open framework. In: Proceedings 13th IEEE int conf autom face gesture recognition, FG. 75–82. https://doi.org/10.1109/FG.2018.00021

Huber P, Hu G, Tena R, et al. (2016) A multiresolution 3d morphable face model and fitting framework. InProceedings of the 11th joint conference on computer vision, imaging and computer graphics theory and applications, pp 79–86. SciTePress.

Li T, Bolkart T et al (2017) Learning a model of facial shape and expression from 4D scans. ACM Trans Graphics 36(6):1–17. https://doi.org/10.1145/3130800.3130813

Lin J, Yuan Y, Shao T, Zhou K (2020) Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional networks. Comput Vision Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.00593

Paysan P, Knothe R, Amberg B, et al (2009) A 3D face model for pose and illumination invariant face recognition. In: 6th IEEE international conference on advanced video and signal based surveillance, AVSS 2009. pp 296–301

Kim D, Hernandez M, Choi J, Medioni G (2018) Deep 3D face identification. IEEE international joint conference on biometrics (IJCB), IJCB 2017 2018-January:133–142. https://doi.org/10.1109/BTAS.2017.8272691

Gecer B, Ploumpis S, Kotsia I, Zafeiriou S (2019) Ganfit: Generative adversarial network fitting for high fidelity 3D face reconstruction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition:1155–1164. https://doi.org/10.1109/CVPR.2019.00125

Kim H, Garrido P, Tewari A et al (2018) Deep video portraits. ACM Trans Graphics 37:1–14. https://doi.org/10.1145/3197517.3201283

Maninchedda F, Oswald MR, Pollefeys M (2017) Fast 3D reconstruction of faces with glasses. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2017.490

Zhang S, Yu H, Wang T et al (2018) Dense 3D facial reconstruction from a single depth image in unconstrained environment. Virtual Reality 22(1):37–46. https://doi.org/10.1007/s10055-017-0311-6

Jiang L, Wu X, Kittler J (2018) Pose invariant 3D face reconstruction. 1–8. arXiv preprint arXiv:1811.05295

Wu F, Li S, Zhao T et al (2019) Cascaded regression using landmark displacement for 3D face reconstruction. Pattern Recogn Lett 125:766–772. https://doi.org/10.1016/j.patrec.2019.07.017

Kollias D, Cheng S, Ververas E et al (2020) Deep neural network augmentation: generating faces for affect analysis. Int J Comput Vision 128:1455–1484. https://doi.org/10.1007/s11263-020-01304-3

4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications | DeepAI. https://deepai.org/publication/4dfab-a-large-scale-4d-facial-expression-database-for-biometric-applications. Accessed 14 Oct 2020

Lyu J, Li X, Zhu X, Cheng C (2020) Pixel-Face: A Large-Scale, High-Resolution Benchmark for 3D Face Reconstruction. arXiv preprint arXiv:2008.12444

Zhu Z, Luo P, Wang X, Tang X (2013) Deep learning identity-preserving face space. In: Proceedings of the IEEE international conference on computer vision. institute of electrical and electronics engineers inc., pp 113–120

Tang Y, Salakhutdinov R, Hinton G (2012) Deep Lambertian Networks. arXiv preprint arXiv:1206.6445

Richardson E, Sela M, Kimmel R (2016) 3D face reconstruction by learning from synthetic data. In: Proceedings - 2016 4th international conference on 3D vision, 3DV 2016. Institute of electrical and electronics engineers inc., pp 460–467

Richardson E, Sela M, Or-El R, Kimmel R (2017) Learning detailed face reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1259–1268

Laine S, Karras T, Aila T, et al. (2016) Facial performance capture with deep neural networks. arXiv preprint arXiv:1609.06536, 3

Nair V, Susskind J, Hinton GE (2008) Analysis-by-synthesis by learning to invert generative black boxes. In: International conference on artificial neural networks, pp 971–981

Peng X, Feris RS, Wang X, Metaxas DN (2016) A recurrent encoder-decoder network for sequential face alignment. In: European conference on computer vision, pp 38–56.

Zulqarnain Gilani S, Mian A (2018) Learning from millions of 3D scans for large-scale 3D face recognition. Proceedings IEEE Comput soc conf comput vis pattern recognit, pp 1896–1905. https://doi.org/10.1109/CVPR.2018.00203

Thies J, Elgharib M, Tewari A, et al (2019) Neural voice puppetry: audio-driven facial reenactment. In: European conference on computer vision, pp 716–731

Li X, Hu G, Zhu J et al (2020) Learning symmetry consistent deep CNNs for face completion. IEEE Trans Image Proc 29:7641–7655. https://doi.org/10.1109/TIP.2020.3005241

Han X, Hou K, Du D et al (2020) CaricatureShop: personalized and photorealistic caricature sketching. IEEE Trans Vis Comput Graphics 26:2349–2361. https://doi.org/10.1109/TVCG.2018.2886007

Moschoglou S, Ploumpis S, Nicolaou MA et al (2020) 3DFaceGAN: adversarial nets for 3D face representation, generation, and translation. Int J Comput Vision 128(10):2534–2551. https://doi.org/10.1007/s11263-020-01329-8

Feng M, Zulqarnain Gilani S, Wang Y, et al (2018) 3D face reconstruction from light field images: a model-free approach. Lect Notes Comput Science (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11214 LNCS: 508–526. https://doi.org/10.1007/978-3-030-01249-6_31

Anbarjafari G, Haamer RE, LÜSi I, et al (2019) 3D face reconstruction with region based best fit blending using mobile phone for virtual reality based social media. Bull Polish Acad Sci Tech Sci. 67: 125–132. https://doi.org/10.24425/bpas.2019.127341

Kim H, Zollhöfer M, Tewari A, et al (2018) InverseFaceNet: deep monocular inverse face rendering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4625–4634

Jackson AS, Bulat A, Argyriou V, Tzimiropoulos G (2017) Large Pose 3D Face Reconstruction from a single image via direct volumetric CNN regression. In: Proceedings IEEE int conf comput Vis 2017-Octob:1031–1039. https://doi.org/10.1109/ICCV.2017.117

Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv:1406.2283

Saxena A, Chung SH, Ng AY (2008) 3-D depth reconstruction from a single still image. Int J Comput Vis 76:53–69. https://doi.org/10.1007/s11263-007-0071-y

Tulsiani S, Zhou T, Efros AA, Malik J (2017) Multi-view supervision for single-view reconstruction via differentiable ray consistency. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2626–2634

Tatarchenko M, Dosovitskiy A, Brox T (2017) Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE international conference on computer vision, pp 2088–2096

Roth J, Tong Y, Liu X (2016) Adaptive 3D face reconstruction from unconstrained photo collections, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4197–4206

Kemelmacher-Shlizerman I, Seitz SM (2011) Face reconstruction in the wild. In: Proceedings of the IEEE international conference on computer vision. pp 1746–1753

Xing Y, Tewari R, Mendonça PRS (2019) A self-supervised bootstrap method for single-image 3D face reconstruction. Proc - 2019 IEEE Winter Conf Appl Comput Vision. WACV 2019:1014–1023. https://doi.org/10.1109/WACV.2019.00113

Kemelmacher-Shlizerman I, Basri R (2011) 3D face reconstruction from a single image using a single reference face shape. IEEE Trans Pattern Anal Mach Intell 33:394–405. https://doi.org/10.1109/TPAMI.2010.63

Sengupta S, Lichy D, Kanazawa A et al (2020) SfSNet: learning shape, reflectance and illuminance of faces in the wild. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.3046915

Jiang L, Zhang J, Deng B et al (2018) 3D face reconstruction with geometry details from a single image. IEEE Trans Image Process 27:4756–4770. https://doi.org/10.1109/TIP.2018.2845697

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778

Liu F, Zeng D, Li J, Zhao Q, jun (2017) On 3D face reconstruction via cascaded regression in shape space. Front Inf Technol Electron Eng 18:1978–1990. https://doi.org/10.1631/FITEE.1700253

Tewari A, Zollhöfer M, Kim H, et al (2017) MoFA: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings - 2017 IEEE Int Conf Comput Vis Work ICCVW 2017 2018-Janua:1274–1283. https://doi.org/10.1109/ICCVW.2017.153

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

Visual Geometry Group - University of Oxford. http://www.robots.ox.ac.uk/~vgg/data/vgg_face/. Accessed 13 Oct 2020

Dou P, Shah SK, Kakadiaris IA (2017) End-to-end 3D face reconstruction with deep neural networks. In: Proceedings- 30th IEEE conf comput vis pattern recognition, CVPR 1503–1512. https://doi.org/10.1109/CVPR.2017.164

Han X, Gao C, Yu Y (2017) DeepSketch2Face: a deep learning based sketching system for 3D face and caricature modeling. ACM Trans Graph 36:1–12. https://doi.org/10.1145/3072959.3073629

Hsu GS, Shie HC, Hsieh CH, Chan JS (2018) Fast landmark localization with 3D component reconstruction and CNN for cross-pose recognition. IEEE Trans Circuits Syst Video Technol 28:3194–3207. https://doi.org/10.1109/TCSVT.2017.2748379

Cao X, Chen Z, Chen A et al (2018) Sparse photometric 3D face reconstruction guided by morphable models. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00487

Tran AT, Hassner T, Masi I et al (2018) Extreme 3D face reconstruction: seeing through occlusions. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00414

Feng ZH, Huber P, Kittler J, et al (2018) Evaluation of dense 3D reconstruction from 2D face images in the wild. In: Proceedings - 13th IEEE int conf autom face gesture recognition, FG 2018 780–786. https://doi.org/10.1109/FG.2018.00123

Feng Y, Wu F, Shao X, et al (2018) Joint 3d face reconstruction and dense alignment with position map regression network. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11218 LNCS:557–574. https://doi.org/10.1007/978-3-030-01264-9_33

Liu F, Zhu R, Zeng D et al (2018) Disentangling features in 3d face shapes for joint face reconstruction and recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00547

Chinaev N, Chigorin A, Laptev I (2019) MobileFace: 3D face reconstruction with efficient CNN regression. In: Leal-Taixé Laura, Roth Stefan (eds) Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018, Proceedings, Part IV. Springer International Publishing, Cham, pp 15–30. https://doi.org/10.1007/978-3-030-11018-5_3

Deng Y, Yang J, Xu S, et al (2019) Accurate 3D face reconstruction with weakly-supervised learning: From single image to image set. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2019-June:285–295. https://doi.org/10.1109/CVPRW.2019.00038

Yuan X, Park IK (2019) Face de-occlusion using 3D morphable model and generative adversarial network. In: Proceedings IEEE int conf comput vis 2019-Octob:10061–10070. https://doi.org/10.1109/ICCV.2019.01016

Luo Y, Tu X, Xie M (2019) Learning robust 3D face reconstruction and discriminative identity representation. 2019 2nd IEEE int conf inf commun signal process ICICSP 2019 317–321. https://doi.org/10.1109/ICICSP48821.2019.8958506

Gecer B, Lattas A, Ploumpis S et al (2019) Synthesizing coupled 3D face modalities by trunk-branch generative adversarial networks. European conference on computer vision. Springer, Cham, pp 415–433

Chen Y, Wu F, Wang Z et al (2019) Self-supervised Learning of Detailed 3D Face Reconstruction. IEEE Trans Image Process 29:8696–8705

Large-scale CelebFaces Attributes (CelebA) Dataset. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Accessed 13 Oct 2020

Labelled Faces in the Wild (LFW) Dataset | Kaggle. https://www.kaggle.com/jessicali9530/lfw-dataset. Accessed 13 Oct 2020

Ren W, Yang J, Deng S, et al (2019) Face video deblurring using 3D facial priors. In: Proceedings IEEE int conf comput vis 2019-Octob:9387–9396. https://doi.org/10.1109/ICCV.2019.00948

Jourabloo A, Liu X (2015) Pose-invariant 3D face alignment. In Proceedings of the IEEE international conference on computer vision. pp 3694–3702

Cheng S, Kotsia I, Pantic M, et al. (2018) 4DFAB: a large scale 4D facial expression database for biometric applications. https://arxiv.org/pdf/1712.01443v2.pdf. Accessed 14 Oct 2020

Liu F, Zhao Q, Liu X, Zeng D (2020) Joint face alignment and 3D face reconstruction with application to face recognition. IEEE Trans Pattern Anal Mach Intell 42:664–678. https://doi.org/10.1109/TPAMI.2018.2885995

Ye Z, Yi R, Yu M, et al (2020) 3D-CariGAN: an end-to-end solution to 3D caricature generation from face photos. 1–17. arXiv preprint arXiv:2003.06841

Huo J, Li W, Shi Y, et al. (2017) Webcaricature: a benchmark for caricature recognition. arXiv preprint arXiv:1703.03230

Lattas A, Moschoglou S, Gecer B, et al (2020) AvatarMe: realistically renderable 3D facial reconstruction “In-the-Wild.” 757–766. https://doi.org/10.1109/cvpr42600.2020.00084

Cai H, Guo Y, Peng Z, Zhang J (2021) Landmark detection and 3D face reconstruction for caricature using a nonlinear parametric model. Graphical Models 115:101103. https://doi.org/10.1016/j.gmod.2021.101103

Deng Y, Yang J, Chen D, et al (2020) Disentangled and controllable face image generation via 3D imitative-contrastive learning. https://doi.org/10.1109/cvpr42600.2020.00520

Li K, Yang J, Jiao N, et al (2020) Adaptive 3D face reconstruction from a single image. 1–11. arXiv preprint arXiv:2007.03979

Chaudhuri B, Vesdapunt N, Shapiro L, Wang B (2020) Personalized Face Modeling for Improved Face Reconstruction and Motion Retargeting. In: Vedaldi A, Bischof H, Brox T, Frahm J-M (eds) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V. Springer International Publishing, Cham, pp 142–160. https://doi.org/10.1007/978-3-030-58558-7_9

Shang J, Shen T, Li S, et al (2020) Self-supervised monocular 3D face reconstruction by occlusion-aware multi-view geometry consistency. In: computer vision–ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, proceedings, Part XV 16 (pp. 53–70). Springer International Publishing

Cai X, Yu H, Lou J, et al (2020) 3D facial geometry recovery from a depth view with attention guided generative adversarial network. arXiv preprint arXiv:2009.00938

Xu S, Yang J, Chen D, et al (2020) Deep 3D portrait from a single image. 7707–7717. https://doi.org/10.1109/cvpr42600.2020.00773

Zhang J, Lin L, Zhu J, Hoi SCH (2021) Weakly-supervised multi-face 3D reconstruction. 1–9. arXiv preprint arXiv:2101.02000

Köstinger M, Wohlhart P, Roth PM, Bischof H (2011) Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. Proc IEEE Int Conf Comput Vis. https://doi.org/10.1109/ICCVW.2011.6130513

ICG - AFLW. https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/. Accessed 14 Oct 2020

Tu X, Zhao J, Jiang Z et al (2019) 3D face reconstruction from a single image assisted by 2D face images in the wild. IEEE Trans Multimed. https://doi.org/10.1109/TMM.2020.2993962

Moschoglou S, Papaioannou A, Sagonas C, et al (2017) AgeDB: the first manually collected, in-the-wild age database. In: proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 51–59

Morphace. https://faces.dmi.unibas.ch/bfm/main.php?nav=1-1-0&id=details. Accessed 14 Oct 2020

Savran A, Alyüz N, Dibeklioğlu H et al (2008) Bosphorus Database for 3D Face Analysis. European workshop on biometrics and identity management. Springer, Berlin, Heidelberg, pp 47–56

3D facial expression database - Binghamton University. http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html. Accessed 13 Oct 2020

Center for Biometrics and Security Research. http://www.cbsr.ia.ac.cn/english/3DFace Databases.asp. Accessed 14 Oct 2020

Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv preprint arXiv:1411.7923

Celebrities in Frontal-Profile in the Wild. http://www.cfpw.io/. Accessed 14 Oct 2020

Yang H, Zhu H, Wang Y, et al (2020) FaceScape: a large-scale high quality 3D face dataset and detailed riggable 3D face prediction. 598–607

FaceWarehouse. http://kunzhou.net/zjugaps/facewarehouse/. Accessed 13 Oct 2020

Phillips PJ, Flynn PJ, Scruggs T, et al. (2005) Overview of the face recognition grand challenge. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 1: 947–954

MORENO, A. (2004) GavabDB : a 3d face database. In: Proceedings 2nd COST275 work biometrics internet, 2004 75–80

Le V, Brandt J, Lin Z, et al (2012) Interactive facial feature localization. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7574 LNCS:679–692. https://doi.org/10.1007/978-3-642-33712-3_49

IJB-A Dataset Request Form | NIST. https://www.nist.gov/itl/iad/image-group/ijb-dataset-request-form. Accessed 14 Oct 2020

Min R, Kose N, Dugelay JL (2014) KinectfaceDB: a kinect database for face recognition. IEEE Trans Syst Man, Cybern Syst 44:1534–1548. https://doi.org/10.1109/TSMC.2014.2331215

Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N (2011) Localizing parts of faces using a consensus of exemplars. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2011.5995602

Bagdanov AD, Del Bimbo A, Masi I (2011) The florence 2D/3D hybrid face dataset. In: Proceedings of the 2011 joint ACM workshop on Human gesture and behavior understanding - J-HGBU ’11. ACM Press, New York, New York, USA, p 79

Notre Dame CVRL. https://cvrl.nd.edu/projects/data/#nd-2006-data-set. Accessed 13 Oct 2020

Laboratory for Image and Video Engineering - The University of Texas at Austin. http://live.ece.utexas.edu/research/texas3dfr/. Accessed 14 Oct 2020

Le HA, Kakadiaris IA (2017) UHDB31: A dataset for better understanding face recognition across pose and illumination variation. In: 2017 IEEE international conference on computer vision workshops (ICCVW). IEEE, pp 2555–2563

Colombo A, Cusano C, Schettini R (2011) UMB-DB: a database of partially occluded 3D faces. In: Proceedings of the IEEE international conference on computer vision. pp 2113–2119

Parkhi OM, Vedaldi A, Zisserman A, (2015) Deep Face Recognition. pp 1–12

Sanderson C (2002) The VidTIMIT Database. (No. REP_WORK). IDIAP

Son Chung J, Nagrani A, Zisserman A, (2018) VoxCeleb2: deep speaker recognition. arXiv preprint arXiv:1806.05622

YouTube Faces Database : Main. https://www.cs.tau.ac.il/~wolf/ytfaces/. Accessed 14 Oct 2020

300-VW | Computer Vision Online. https://computervisiononline.com/dataset/1105138793. Accessed 13 Oct 2020

i·bug - resources - 300 Faces In-the-Wild Challenge (300-W), ICCV 2013. https://ibug.doc.ic.ac.uk/resources/300-W/. Accessed 14 Oct 2020

Vijayan V, Bowyer K, Flynn P (2011) 3D twins and expression challenge. In: Proceedings of the IEEE international conference on computer vision. pp 2100–2105

AI + X: Don’t Switch Careers, Add AI - YouTube. https://www.youtube.com/watch?v=4Ai7wmUGFNA. Accessed 5 Feb 2021

Cao C, Hou Q, Zhou K (2014) Displaced dynamic expression regression for real-time facial tracking and animation. In: ACM transactions on graphics. Association for computing machinery, pp 1–10

Bouaziz S, Wang Y, Pauly M (2013) Online modeling for realtime facial animation. ACM Trans Graph 32:1–10. https://doi.org/10.1145/2461912.2461976

Garrido P, Valgaerts L, Sarmadi H et al (2015) VDub: modifying face video of actors for plausible visual alignment to a dubbed audio track. Comput Graph Forum 34:193–204. https://doi.org/10.1111/cgf.12552

Thies J, Zollhöfer M, Stamminger M, et al Face2Face: real-time face capture and reenactment of RGB videos

MIT Introduction to Deep Learning | 6.S191 - YouTube. https://www.youtube.com/watch?v=5tvmMX8r_OM. Accessed 8 Feb 2021

Garrido P, Valgaerts L, Wu C, Theobalt C (2013) Reconstructing detailed dynamic face geometry from monocular video. ACM Trans Graph 32:1–10. https://doi.org/10.1145/2508363.2508380

Viswanathan S, Heisters IES, Evangelista BP, et al. (2021) Systems and methods for generating augmented-reality makeup effects. U.S. Patent 10,885,697

Nam H, Lee J, Park JI (2020) Interactive Pixel-unit AR Lip Makeup System Using RGB Camera. J Broadcast Eng 25(7):1042–51

Siegl C, Lange V, Stamminger M, et al FaceForge: markerless non-rigid face multi-projection mapping

Face replacement in video using a still image and Face Tools - After Effects tutorial - YouTube. https://www.youtube.com/watch?v=x7T5jiUpUiE. Accessed 6 Feb 2021

Antipov G, Baccouche M and Dugelay JL, (2017), Face aging with conditional generative adversarial networks. In: IEEE international conference on image processing (ICIP), pp. 2089–2093

Shi C, Zhang J, Yao Y et al (2020) CAN-GAN: conditioned-attention normalized GAN for face age synthesis. Pattern Recognit Lett 138:520–526. https://doi.org/10.1016/j.patrec.2020.08.021

Fang H, Deng W, Zhong Y, Hu J (2020) Triple-GAN: Progressive face aging with triple translation loss. In: IEEE comput soc conf comput vis pattern recognit work 2020-June:3500–3509. https://doi.org/10.1109/CVPRW50498.2020.00410

Huang Z, Chen S, Zhang J, Shan H (2020) PFA-GAN: progressive face aging with generative adversarial network. IEEE Trans Inf Forensics Secur. https://doi.org/10.1109/TIFS.2020.3047753

Liu S, Li D, Cao T et al (2020) GAN-based face attribute editing. IEEE Access 8:34854–34867. https://doi.org/10.1109/ACCESS.2020.2974043

Yadav D, Kohli N, Vatsa M, et al (2020) Age gap reducer-GAN for recognizing age-separated faces. In: 25th international conference on pattern recognition (ICPR), pp 10090–10097

Sharma N, Sharma R, Jindal N (2020) An improved technique for face age progression and enhanced super-resolution with generative adversarial networks. Wirel Pers Commun 114:2215–2233. https://doi.org/10.1007/s11277-020-07473-1

Liu L, Yu H, Wang S et al (2021) Learning shape and texture progression for young child face aging. Sig Proc Image Commun 93:116127. https://doi.org/10.1016/j.image.2020.116127

Nirkin Y, Keller Y, Hassner T (2019) FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 7184–7193

Tripathy S, Kannala J, Rahtu E (2020) ICface: interpretable and controllable face reenactment using GANs. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 3385–3394

Ha S, Kersner M, Kim B, et al (2019) MarioNETte: few-shot face reenactment preserving identity of unseen targets. arXiv 34:10893–10900

Zhang J, Zeng † Xianfang, Wang M, et al (2020) FReeNet: multi-identity face reenactment. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5326–5335.

Zeng X, Pan Y, Wang M, et al (2020) Realistic face reenactment via self-supervised disentangling of identity and pose. arXiv 34:12757–12764

Ding X, Raziei Z, Larson EC, et al (2020) Swapped face detection using deep learning and subjective assessment. EURASIP Journal on Information Security, pp 1–12

Zukerman J, Paglia M, Sager C, et al (2019) Video manipulation with face replacement. U.S. Patent 10,446,189

Hoshen D (2020) MakeupBag: Disentangling makeup extraction and application. arXiv preprint rXiv:2012.02157

Li Y, Huang H, Yu J, et al (2020) Cosmetic-aware makeup cleanser. arXiv preprint arXiv:2004.09147

Horita D, Aizawa K (2020) SLGAN: style- and latent-guided generative adversarial network for desirable makeup transfer and removal. arXiv preprint arXiv:2009.07557

Wu W, Zhang Y, Li C, et al (2018) ReenactGAN: learning to reenact faces via boundary transfer. In: Proceedings of the European conference on computer vision (ECCV), pp 603–619

Nirkin Y, Wolf L, Keller Y, Hassner T (2020) DeepFake detection based on the discrepancy between the face and its context. arXiv preprint arXiv:2008.12262.

Tolosana R, Vera-Rodriguez R, Fierrez J et al (2020) DeepFakes and beyond: a survey of face manipulation and fake detection. Inf Fusion 64:131–148

Shubham K, Venkatesh G, Sachdev R, et al (2020) Learning a deep reinforcement learning policy over the latent space of a pre-trained GAN for semantic age manipulation. In: 2021 international joint conference on neural networks (IJCNN), pp 1–8. IEEE

Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196

Pham QTM, Yang J, Shin J (2020) Semi-supervised facegan for face-age progression and regression with synthesized paired images. Electron 9:1–16. https://doi.org/10.3390/electronics9040603

Zhu H, Huang Z, Shan H, Zhang J (2020) LOOK GLOBALLY , AGE LOCALLY : FACE AGING WITH AN ATTENTION MECHANISM Haiping Zhu Zhizhong Huang Hongming Shan Shanghai Key Lab of Intelligent Information Processing , School of Computer Science , Fudan University , China , 200433. ICASSP 2020 - 2020 IEEE Int Conf Acoust Speech Signal Process 1963–1967

Wu S, Rupprecht C, Vedaldi A (2021) Unsupervised learning of probably symmetric deformable 3D objects from images in the wild. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3076536

Heidekrueger PI, Juran S, Szpalski C et al (2017) The current preferred female lip ratio. J Cranio-Maxillofacial Surg 45:655–660. https://doi.org/10.1016/j.jcms.2017.01.038

Baudoin J, Meuli JN, di Summa PG et al (2019) A comprehensive guide to upper lip aesthetic rejuvenation. J Cosmet Dermatol 18:444–450

Garrido P, Zollhöfer M, Wu C et al (2016) Corrective 3D reconstruction of lips from monocular video. ACM Trans Graph 35:1–11. https://doi.org/10.1145/2980179.2982419

Wu C, Bradley D, Garrido P et al (2016) Model-based teeth reconstruction. ACM Trans Graph 35(6):220–221. https://doi.org/10.1145/2980179.2980233

Wen Q, Xu F, Lu M, Yong JH (2017) Real-time 3D eyelids tracking from semantic edges. ACM Trans Graph 36:1–11. https://doi.org/10.1145/3130800.3130837

Wang C, Shi F, Xia S, Chai J (2016) Realtime 3D eye gaze animation using a single RGB camera. ACM Trans Graph 35:1–14. https://doi.org/10.1145/2897824.2925947

Zhou X, Lin J, Jiang J, Chen S (2019) Learning a 3D gaze estimator with improved itracker combined with bidirectional LSTM. In: Proceedings - IEEE international conference on multimedia and expo. IEEE Computer Society, pp 850–855

Li H, Hu L, Saito S (2020) 3D hair synthesis using volumetric variational autoencoders. ACM Transactions on Graphics (TOG) 37(6):1–12

Ye Z, Li G, Yao B, Xian C (2020) HAO-CNN: filament-aware hair reconstruction based on volumetric vector fields. Comput Animat Virtual Worlds 31:e1945. https://doi.org/10.1002/cav.1945

He H, Li G, Ye Z et al (2019) Data-driven 3D human head reconstruction. Comput Graph 80:85–96. https://doi.org/10.1016/j.cag.2019.03.008