3D Face Reconstruction in Deep Learning Era: A Survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zollhöfer M, Thies J, Garrido P et al (2018) State of the art on monocular 3D face reconstruction, tracking, and applications. Comput Graph Forum 37(2):523–550. https://doi.org/10.1111/cgf.13382
Sharma S, Kumar V (2020) Voxel-based 3D face reconstruction and its application to face recognition using sequential deep learning. Multimed Tools Appl 79:17303–17330. https://doi.org/10.1007/s11042-020-08688-x
Cloud Vision API | Google Cloud. https://cloud.google.com/vision/docs/face-tutorial. Accessed 12 Jan 2021
AWS Marketplace: Deep Vision API. https://aws.amazon.com/marketplace/pp/Deep-Vision-AI-Inc-Deep-Vision-API/B07JHXVZ4M. Accessed 12 Jan 2021
Computer Vision | Microsoft Azure. https://azure.microsoft.com/en-in/services/cognitive-services/computer-vision/. Accessed 12 Jan 2021
Koujan MR, Dochev N, Roussos A (2020) Real-Time Monocular 4D Face Reconstruction using the LSFM models. preprint arXiv:2006.10499.
Behzad M, Vo N, Li X, Zhao G (2021) Towards reading beyond faces for sparsity-aware 4D affect recognition. Neurocomputing 458:297–307
Sharma S, Kumar V (2020) Voxel-based 3D occlusion-invariant face recognition using game theory and simulated annealing. Multimedia Tools and Applications 79(35):26517–26547
Sharma S, Kumar V (2021) 3D landmark‐based face restoration for recognition using variational autoencoder and triplet loss. IET Biometrics 10(1):87–98. https://doi.org/10.1049/bme2.12005
Tu X, Zhao J, Xie M et al (2020) 3D face reconstruction from a single image assisted by 2D face images in the Wild. IEEE Trans Multimed 23:1160–1172. https://doi.org/10.1109/TMM.2020.2993962
Bulat A, Tzimiropoulos G How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks). In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1021–1030
Zhu X, Lei Z, Liu X, et al (2016) Face alignment across large poses: a 3D solution. computer vision and pattern recognition (CVPR), pp 146–155
Gu S, Bao J, Yang H, et al (2019) Mask-guided portrait editing with conditional gans. In: Proc IEEE comput soc conf comput vis pattern recognit 2019-June:3431–3440. doi: https://doi.org/10.1109/CVPR.2019.00355
Guo Y, Wang H, Hu Q et al (2020) Deep learning for 3D point clouds: A survey. IEEE Trans Pattern Anal Mach Intell 43(12):4338–4364. https://doi.org/10.1109/tpami.2020.3005434
Ye M, Shen J, Lin G et al (2021) Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell 8828:1–1. https://doi.org/10.1109/tpami.2021.3054775
Tran L, Liu X Nonlinear 3D Face Morphable Model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7346–7355
Egger B, Smith WAP, Tewari A et al (2020) 3D morphable face models—past, present, and future. ACM Trans Graph 39(5):1–38. https://doi.org/10.1145/3395208
Blanz V, Vetter T (1999) Face recognition based on fitting a 3D morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074
Booth J, Roussos A, Ponniah A et al (2018) Large scale 3D morphable models. Int J Comput Vis 126:233–254. https://doi.org/10.1007/s11263-017-1009-7
Cao C, Weng Y, Zhou S et al (2014) FaceWarehouse: A 3D facial expression database for visual computing. IEEE Trans Vis Comput Graph 20:413–425. https://doi.org/10.1109/TVCG.2013.249
Gerig T, Morel-Forster A, Blumer C, et al (2018) Morphable face models - An open framework. In: Proceedings 13th IEEE int conf autom face gesture recognition, FG. 75–82. https://doi.org/10.1109/FG.2018.00021
Huber P, Hu G, Tena R, et al. (2016) A multiresolution 3d morphable face model and fitting framework. InProceedings of the 11th joint conference on computer vision, imaging and computer graphics theory and applications, pp 79–86. SciTePress.
Li T, Bolkart T et al (2017) Learning a model of facial shape and expression from 4D scans. ACM Trans Graphics 36(6):1–17. https://doi.org/10.1145/3130800.3130813
Lin J, Yuan Y, Shao T, Zhou K (2020) Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional networks. Comput Vision Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.00593
Paysan P, Knothe R, Amberg B, et al (2009) A 3D face model for pose and illumination invariant face recognition. In: 6th IEEE international conference on advanced video and signal based surveillance, AVSS 2009. pp 296–301
Kim D, Hernandez M, Choi J, Medioni G (2018) Deep 3D face identification. IEEE international joint conference on biometrics (IJCB), IJCB 2017 2018-January:133–142. https://doi.org/10.1109/BTAS.2017.8272691
Gecer B, Ploumpis S, Kotsia I, Zafeiriou S (2019) Ganfit: Generative adversarial network fitting for high fidelity 3D face reconstruction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition:1155–1164. https://doi.org/10.1109/CVPR.2019.00125
Kim H, Garrido P, Tewari A et al (2018) Deep video portraits. ACM Trans Graphics 37:1–14. https://doi.org/10.1145/3197517.3201283
Maninchedda F, Oswald MR, Pollefeys M (2017) Fast 3D reconstruction of faces with glasses. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2017.490
Zhang S, Yu H, Wang T et al (2018) Dense 3D facial reconstruction from a single depth image in unconstrained environment. Virtual Reality 22(1):37–46. https://doi.org/10.1007/s10055-017-0311-6
Jiang L, Wu X, Kittler J (2018) Pose invariant 3D face reconstruction. 1–8. arXiv preprint arXiv:1811.05295
Wu F, Li S, Zhao T et al (2019) Cascaded regression using landmark displacement for 3D face reconstruction. Pattern Recogn Lett 125:766–772. https://doi.org/10.1016/j.patrec.2019.07.017
Kollias D, Cheng S, Ververas E et al (2020) Deep neural network augmentation: generating faces for affect analysis. Int J Comput Vision 128:1455–1484. https://doi.org/10.1007/s11263-020-01304-3
4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications | DeepAI. https://deepai.org/publication/4dfab-a-large-scale-4d-facial-expression-database-for-biometric-applications. Accessed 14 Oct 2020
Lyu J, Li X, Zhu X, Cheng C (2020) Pixel-Face: A Large-Scale, High-Resolution Benchmark for 3D Face Reconstruction. arXiv preprint arXiv:2008.12444
Zhu Z, Luo P, Wang X, Tang X (2013) Deep learning identity-preserving face space. In: Proceedings of the IEEE international conference on computer vision. institute of electrical and electronics engineers inc., pp 113–120
Tang Y, Salakhutdinov R, Hinton G (2012) Deep Lambertian Networks. arXiv preprint arXiv:1206.6445
Richardson E, Sela M, Kimmel R (2016) 3D face reconstruction by learning from synthetic data. In: Proceedings - 2016 4th international conference on 3D vision, 3DV 2016. Institute of electrical and electronics engineers inc., pp 460–467
Richardson E, Sela M, Or-El R, Kimmel R (2017) Learning detailed face reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1259–1268
Laine S, Karras T, Aila T, et al. (2016) Facial performance capture with deep neural networks. arXiv preprint arXiv:1609.06536, 3
Nair V, Susskind J, Hinton GE (2008) Analysis-by-synthesis by learning to invert generative black boxes. In: International conference on artificial neural networks, pp 971–981
Peng X, Feris RS, Wang X, Metaxas DN (2016) A recurrent encoder-decoder network for sequential face alignment. In: European conference on computer vision, pp 38–56.
Zulqarnain Gilani S, Mian A (2018) Learning from millions of 3D scans for large-scale 3D face recognition. Proceedings IEEE Comput soc conf comput vis pattern recognit, pp 1896–1905. https://doi.org/10.1109/CVPR.2018.00203
Thies J, Elgharib M, Tewari A, et al (2019) Neural voice puppetry: audio-driven facial reenactment. In: European conference on computer vision, pp 716–731
Li X, Hu G, Zhu J et al (2020) Learning symmetry consistent deep CNNs for face completion. IEEE Trans Image Proc 29:7641–7655. https://doi.org/10.1109/TIP.2020.3005241
Han X, Hou K, Du D et al (2020) CaricatureShop: personalized and photorealistic caricature sketching. IEEE Trans Vis Comput Graphics 26:2349–2361. https://doi.org/10.1109/TVCG.2018.2886007
Moschoglou S, Ploumpis S, Nicolaou MA et al (2020) 3DFaceGAN: adversarial nets for 3D face representation, generation, and translation. Int J Comput Vision 128(10):2534–2551. https://doi.org/10.1007/s11263-020-01329-8
Feng M, Zulqarnain Gilani S, Wang Y, et al (2018) 3D face reconstruction from light field images: a model-free approach. Lect Notes Comput Science (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11214 LNCS: 508–526. https://doi.org/10.1007/978-3-030-01249-6_31
Anbarjafari G, Haamer RE, LÜSi I, et al (2019) 3D face reconstruction with region based best fit blending using mobile phone for virtual reality based social media. Bull Polish Acad Sci Tech Sci. 67: 125–132. https://doi.org/10.24425/bpas.2019.127341
Kim H, Zollhöfer M, Tewari A, et al (2018) InverseFaceNet: deep monocular inverse face rendering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4625–4634
Jackson AS, Bulat A, Argyriou V, Tzimiropoulos G (2017) Large Pose 3D Face Reconstruction from a single image via direct volumetric CNN regression. In: Proceedings IEEE int conf comput Vis 2017-Octob:1031–1039. https://doi.org/10.1109/ICCV.2017.117
Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv:1406.2283
Saxena A, Chung SH, Ng AY (2008) 3-D depth reconstruction from a single still image. Int J Comput Vis 76:53–69. https://doi.org/10.1007/s11263-007-0071-y
Tulsiani S, Zhou T, Efros AA, Malik J (2017) Multi-view supervision for single-view reconstruction via differentiable ray consistency. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2626–2634
Tatarchenko M, Dosovitskiy A, Brox T (2017) Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE international conference on computer vision, pp 2088–2096
Roth J, Tong Y, Liu X (2016) Adaptive 3D face reconstruction from unconstrained photo collections, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4197–4206
Kemelmacher-Shlizerman I, Seitz SM (2011) Face reconstruction in the wild. In: Proceedings of the IEEE international conference on computer vision. pp 1746–1753
Xing Y, Tewari R, Mendonça PRS (2019) A self-supervised bootstrap method for single-image 3D face reconstruction. Proc - 2019 IEEE Winter Conf Appl Comput Vision. WACV 2019:1014–1023. https://doi.org/10.1109/WACV.2019.00113
Kemelmacher-Shlizerman I, Basri R (2011) 3D face reconstruction from a single image using a single reference face shape. IEEE Trans Pattern Anal Mach Intell 33:394–405. https://doi.org/10.1109/TPAMI.2010.63
Sengupta S, Lichy D, Kanazawa A et al (2020) SfSNet: learning shape, reflectance and illuminance of faces in the wild. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.3046915
Jiang L, Zhang J, Deng B et al (2018) 3D face reconstruction with geometry details from a single image. IEEE Trans Image Process 27:4756–4770. https://doi.org/10.1109/TIP.2018.2845697
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778
Liu F, Zeng D, Li J, Zhao Q, jun (2017) On 3D face reconstruction via cascaded regression in shape space. Front Inf Technol Electron Eng 18:1978–1990. https://doi.org/10.1631/FITEE.1700253
Tewari A, Zollhöfer M, Kim H, et al (2017) MoFA: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings - 2017 IEEE Int Conf Comput Vis Work ICCVW 2017 2018-Janua:1274–1283. https://doi.org/10.1109/ICCVW.2017.153
Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
Visual Geometry Group - University of Oxford. http://www.robots.ox.ac.uk/~vgg/data/vgg_face/. Accessed 13 Oct 2020
Dou P, Shah SK, Kakadiaris IA (2017) End-to-end 3D face reconstruction with deep neural networks. In: Proceedings- 30th IEEE conf comput vis pattern recognition, CVPR 1503–1512. https://doi.org/10.1109/CVPR.2017.164
Han X, Gao C, Yu Y (2017) DeepSketch2Face: a deep learning based sketching system for 3D face and caricature modeling. ACM Trans Graph 36:1–12. https://doi.org/10.1145/3072959.3073629
Hsu GS, Shie HC, Hsieh CH, Chan JS (2018) Fast landmark localization with 3D component reconstruction and CNN for cross-pose recognition. IEEE Trans Circuits Syst Video Technol 28:3194–3207. https://doi.org/10.1109/TCSVT.2017.2748379
Cao X, Chen Z, Chen A et al (2018) Sparse photometric 3D face reconstruction guided by morphable models. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00487
Tran AT, Hassner T, Masi I et al (2018) Extreme 3D face reconstruction: seeing through occlusions. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00414
Feng ZH, Huber P, Kittler J, et al (2018) Evaluation of dense 3D reconstruction from 2D face images in the wild. In: Proceedings - 13th IEEE int conf autom face gesture recognition, FG 2018 780–786. https://doi.org/10.1109/FG.2018.00123
Feng Y, Wu F, Shao X, et al (2018) Joint 3d face reconstruction and dense alignment with position map regression network. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11218 LNCS:557–574. https://doi.org/10.1007/978-3-030-01264-9_33
Liu F, Zhu R, Zeng D et al (2018) Disentangling features in 3d face shapes for joint face reconstruction and recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00547
Chinaev N, Chigorin A, Laptev I (2019) MobileFace: 3D face reconstruction with efficient CNN regression. In: Leal-Taixé Laura, Roth Stefan (eds) Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018, Proceedings, Part IV. Springer International Publishing, Cham, pp 15–30. https://doi.org/10.1007/978-3-030-11018-5_3
Deng Y, Yang J, Xu S, et al (2019) Accurate 3D face reconstruction with weakly-supervised learning: From single image to image set. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2019-June:285–295. https://doi.org/10.1109/CVPRW.2019.00038
Yuan X, Park IK (2019) Face de-occlusion using 3D morphable model and generative adversarial network. In: Proceedings IEEE int conf comput vis 2019-Octob:10061–10070. https://doi.org/10.1109/ICCV.2019.01016
Luo Y, Tu X, Xie M (2019) Learning robust 3D face reconstruction and discriminative identity representation. 2019 2nd IEEE int conf inf commun signal process ICICSP 2019 317–321. https://doi.org/10.1109/ICICSP48821.2019.8958506
Gecer B, Lattas A, Ploumpis S et al (2019) Synthesizing coupled 3D face modalities by trunk-branch generative adversarial networks. European conference on computer vision. Springer, Cham, pp 415–433
Chen Y, Wu F, Wang Z et al (2019) Self-supervised Learning of Detailed 3D Face Reconstruction. IEEE Trans Image Process 29:8696–8705
Large-scale CelebFaces Attributes (CelebA) Dataset. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Accessed 13 Oct 2020
Labelled Faces in the Wild (LFW) Dataset | Kaggle. https://www.kaggle.com/jessicali9530/lfw-dataset. Accessed 13 Oct 2020
Ren W, Yang J, Deng S, et al (2019) Face video deblurring using 3D facial priors. In: Proceedings IEEE int conf comput vis 2019-Octob:9387–9396. https://doi.org/10.1109/ICCV.2019.00948
Jourabloo A, Liu X (2015) Pose-invariant 3D face alignment. In Proceedings of the IEEE international conference on computer vision. pp 3694–3702
Cheng S, Kotsia I, Pantic M, et al. (2018) 4DFAB: a large scale 4D facial expression database for biometric applications. https://arxiv.org/pdf/1712.01443v2.pdf. Accessed 14 Oct 2020
Liu F, Zhao Q, Liu X, Zeng D (2020) Joint face alignment and 3D face reconstruction with application to face recognition. IEEE Trans Pattern Anal Mach Intell 42:664–678. https://doi.org/10.1109/TPAMI.2018.2885995
Ye Z, Yi R, Yu M, et al (2020) 3D-CariGAN: an end-to-end solution to 3D caricature generation from face photos. 1–17. arXiv preprint arXiv:2003.06841
Huo J, Li W, Shi Y, et al. (2017) Webcaricature: a benchmark for caricature recognition. arXiv preprint arXiv:1703.03230
Lattas A, Moschoglou S, Gecer B, et al (2020) AvatarMe: realistically renderable 3D facial reconstruction “In-the-Wild.” 757–766. https://doi.org/10.1109/cvpr42600.2020.00084
Cai H, Guo Y, Peng Z, Zhang J (2021) Landmark detection and 3D face reconstruction for caricature using a nonlinear parametric model. Graphical Models 115:101103. https://doi.org/10.1016/j.gmod.2021.101103
Deng Y, Yang J, Chen D, et al (2020) Disentangled and controllable face image generation via 3D imitative-contrastive learning. https://doi.org/10.1109/cvpr42600.2020.00520
Li K, Yang J, Jiao N, et al (2020) Adaptive 3D face reconstruction from a single image. 1–11. arXiv preprint arXiv:2007.03979
Chaudhuri B, Vesdapunt N, Shapiro L, Wang B (2020) Personalized Face Modeling for Improved Face Reconstruction and Motion Retargeting. In: Vedaldi A, Bischof H, Brox T, Frahm J-M (eds) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V. Springer International Publishing, Cham, pp 142–160. https://doi.org/10.1007/978-3-030-58558-7_9
Shang J, Shen T, Li S, et al (2020) Self-supervised monocular 3D face reconstruction by occlusion-aware multi-view geometry consistency. In: computer vision–ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, proceedings, Part XV 16 (pp. 53–70). Springer International Publishing
Cai X, Yu H, Lou J, et al (2020) 3D facial geometry recovery from a depth view with attention guided generative adversarial network. arXiv preprint arXiv:2009.00938
Xu S, Yang J, Chen D, et al (2020) Deep 3D portrait from a single image. 7707–7717. https://doi.org/10.1109/cvpr42600.2020.00773
Zhang J, Lin L, Zhu J, Hoi SCH (2021) Weakly-supervised multi-face 3D reconstruction. 1–9. arXiv preprint arXiv:2101.02000
Köstinger M, Wohlhart P, Roth PM, Bischof H (2011) Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. Proc IEEE Int Conf Comput Vis. https://doi.org/10.1109/ICCVW.2011.6130513
ICG - AFLW. https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/. Accessed 14 Oct 2020
Tu X, Zhao J, Jiang Z et al (2019) 3D face reconstruction from a single image assisted by 2D face images in the wild. IEEE Trans Multimed. https://doi.org/10.1109/TMM.2020.2993962
Moschoglou S, Papaioannou A, Sagonas C, et al (2017) AgeDB: the first manually collected, in-the-wild age database. In: proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 51–59
Morphace. https://faces.dmi.unibas.ch/bfm/main.php?nav=1-1-0&id=details. Accessed 14 Oct 2020
Savran A, Alyüz N, Dibeklioğlu H et al (2008) Bosphorus Database for 3D Face Analysis. European workshop on biometrics and identity management. Springer, Berlin, Heidelberg, pp 47–56
3D facial expression database - Binghamton University. http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html. Accessed 13 Oct 2020
Center for Biometrics and Security Research. http://www.cbsr.ia.ac.cn/english/3DFace Databases.asp. Accessed 14 Oct 2020
Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv preprint arXiv:1411.7923
Celebrities in Frontal-Profile in the Wild. http://www.cfpw.io/. Accessed 14 Oct 2020
Yang H, Zhu H, Wang Y, et al (2020) FaceScape: a large-scale high quality 3D face dataset and detailed riggable 3D face prediction. 598–607
FaceWarehouse. http://kunzhou.net/zjugaps/facewarehouse/. Accessed 13 Oct 2020
Phillips PJ, Flynn PJ, Scruggs T, et al. (2005) Overview of the face recognition grand challenge. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 1: 947–954
MORENO, A. (2004) GavabDB : a 3d face database. In: Proceedings 2nd COST275 work biometrics internet, 2004 75–80
Le V, Brandt J, Lin Z, et al (2012) Interactive facial feature localization. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7574 LNCS:679–692. https://doi.org/10.1007/978-3-642-33712-3_49
IJB-A Dataset Request Form | NIST. https://www.nist.gov/itl/iad/image-group/ijb-dataset-request-form. Accessed 14 Oct 2020
Min R, Kose N, Dugelay JL (2014) KinectfaceDB: a kinect database for face recognition. IEEE Trans Syst Man, Cybern Syst 44:1534–1548. https://doi.org/10.1109/TSMC.2014.2331215
Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N (2011) Localizing parts of faces using a consensus of exemplars. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2011.5995602
Bagdanov AD, Del Bimbo A, Masi I (2011) The florence 2D/3D hybrid face dataset. In: Proceedings of the 2011 joint ACM workshop on Human gesture and behavior understanding - J-HGBU ’11. ACM Press, New York, New York, USA, p 79
Notre Dame CVRL. https://cvrl.nd.edu/projects/data/#nd-2006-data-set. Accessed 13 Oct 2020
Laboratory for Image and Video Engineering - The University of Texas at Austin. http://live.ece.utexas.edu/research/texas3dfr/. Accessed 14 Oct 2020
Le HA, Kakadiaris IA (2017) UHDB31: A dataset for better understanding face recognition across pose and illumination variation. In: 2017 IEEE international conference on computer vision workshops (ICCVW). IEEE, pp 2555–2563
Colombo A, Cusano C, Schettini R (2011) UMB-DB: a database of partially occluded 3D faces. In: Proceedings of the IEEE international conference on computer vision. pp 2113–2119
Sanderson C (2002) The VidTIMIT Database. (No. REP_WORK). IDIAP
Son Chung J, Nagrani A, Zisserman A, (2018) VoxCeleb2: deep speaker recognition. arXiv preprint arXiv:1806.05622
YouTube Faces Database : Main. https://www.cs.tau.ac.il/~wolf/ytfaces/. Accessed 14 Oct 2020
300-VW | Computer Vision Online. https://computervisiononline.com/dataset/1105138793. Accessed 13 Oct 2020
i·bug - resources - 300 Faces In-the-Wild Challenge (300-W), ICCV 2013. https://ibug.doc.ic.ac.uk/resources/300-W/. Accessed 14 Oct 2020
Vijayan V, Bowyer K, Flynn P (2011) 3D twins and expression challenge. In: Proceedings of the IEEE international conference on computer vision. pp 2100–2105
AI + X: Don’t Switch Careers, Add AI - YouTube. https://www.youtube.com/watch?v=4Ai7wmUGFNA. Accessed 5 Feb 2021
Cao C, Hou Q, Zhou K (2014) Displaced dynamic expression regression for real-time facial tracking and animation. In: ACM transactions on graphics. Association for computing machinery, pp 1–10
Bouaziz S, Wang Y, Pauly M (2013) Online modeling for realtime facial animation. ACM Trans Graph 32:1–10. https://doi.org/10.1145/2461912.2461976
Garrido P, Valgaerts L, Sarmadi H et al (2015) VDub: modifying face video of actors for plausible visual alignment to a dubbed audio track. Comput Graph Forum 34:193–204. https://doi.org/10.1111/cgf.12552
Thies J, Zollhöfer M, Stamminger M, et al Face2Face: real-time face capture and reenactment of RGB videos
MIT Introduction to Deep Learning | 6.S191 - YouTube. https://www.youtube.com/watch?v=5tvmMX8r_OM. Accessed 8 Feb 2021
Garrido P, Valgaerts L, Wu C, Theobalt C (2013) Reconstructing detailed dynamic face geometry from monocular video. ACM Trans Graph 32:1–10. https://doi.org/10.1145/2508363.2508380
Viswanathan S, Heisters IES, Evangelista BP, et al. (2021) Systems and methods for generating augmented-reality makeup effects. U.S. Patent 10,885,697
Nam H, Lee J, Park JI (2020) Interactive Pixel-unit AR Lip Makeup System Using RGB Camera. J Broadcast Eng 25(7):1042–51
Siegl C, Lange V, Stamminger M, et al FaceForge: markerless non-rigid face multi-projection mapping
Face replacement in video using a still image and Face Tools - After Effects tutorial - YouTube. https://www.youtube.com/watch?v=x7T5jiUpUiE. Accessed 6 Feb 2021
Antipov G, Baccouche M and Dugelay JL, (2017), Face aging with conditional generative adversarial networks. In: IEEE international conference on image processing (ICIP), pp. 2089–2093
Shi C, Zhang J, Yao Y et al (2020) CAN-GAN: conditioned-attention normalized GAN for face age synthesis. Pattern Recognit Lett 138:520–526. https://doi.org/10.1016/j.patrec.2020.08.021
Fang H, Deng W, Zhong Y, Hu J (2020) Triple-GAN: Progressive face aging with triple translation loss. In: IEEE comput soc conf comput vis pattern recognit work 2020-June:3500–3509. https://doi.org/10.1109/CVPRW50498.2020.00410
Huang Z, Chen S, Zhang J, Shan H (2020) PFA-GAN: progressive face aging with generative adversarial network. IEEE Trans Inf Forensics Secur. https://doi.org/10.1109/TIFS.2020.3047753
Liu S, Li D, Cao T et al (2020) GAN-based face attribute editing. IEEE Access 8:34854–34867. https://doi.org/10.1109/ACCESS.2020.2974043
Yadav D, Kohli N, Vatsa M, et al (2020) Age gap reducer-GAN for recognizing age-separated faces. In: 25th international conference on pattern recognition (ICPR), pp 10090–10097
Sharma N, Sharma R, Jindal N (2020) An improved technique for face age progression and enhanced super-resolution with generative adversarial networks. Wirel Pers Commun 114:2215–2233. https://doi.org/10.1007/s11277-020-07473-1
Liu L, Yu H, Wang S et al (2021) Learning shape and texture progression for young child face aging. Sig Proc Image Commun 93:116127. https://doi.org/10.1016/j.image.2020.116127
Nirkin Y, Keller Y, Hassner T (2019) FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 7184–7193
Tripathy S, Kannala J, Rahtu E (2020) ICface: interpretable and controllable face reenactment using GANs. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 3385–3394
Ha S, Kersner M, Kim B, et al (2019) MarioNETte: few-shot face reenactment preserving identity of unseen targets. arXiv 34:10893–10900
Zhang J, Zeng † Xianfang, Wang M, et al (2020) FReeNet: multi-identity face reenactment. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5326–5335.
Zeng X, Pan Y, Wang M, et al (2020) Realistic face reenactment via self-supervised disentangling of identity and pose. arXiv 34:12757–12764
Ding X, Raziei Z, Larson EC, et al (2020) Swapped face detection using deep learning and subjective assessment. EURASIP Journal on Information Security, pp 1–12
Zukerman J, Paglia M, Sager C, et al (2019) Video manipulation with face replacement. U.S. Patent 10,446,189
Hoshen D (2020) MakeupBag: Disentangling makeup extraction and application. arXiv preprint rXiv:2012.02157
Horita D, Aizawa K (2020) SLGAN: style- and latent-guided generative adversarial network for desirable makeup transfer and removal. arXiv preprint arXiv:2009.07557
Wu W, Zhang Y, Li C, et al (2018) ReenactGAN: learning to reenact faces via boundary transfer. In: Proceedings of the European conference on computer vision (ECCV), pp 603–619
Nirkin Y, Wolf L, Keller Y, Hassner T (2020) DeepFake detection based on the discrepancy between the face and its context. arXiv preprint arXiv:2008.12262.
Tolosana R, Vera-Rodriguez R, Fierrez J et al (2020) DeepFakes and beyond: a survey of face manipulation and fake detection. Inf Fusion 64:131–148
Shubham K, Venkatesh G, Sachdev R, et al (2020) Learning a deep reinforcement learning policy over the latent space of a pre-trained GAN for semantic age manipulation. In: 2021 international joint conference on neural networks (IJCNN), pp 1–8. IEEE
Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196
Pham QTM, Yang J, Shin J (2020) Semi-supervised facegan for face-age progression and regression with synthesized paired images. Electron 9:1–16. https://doi.org/10.3390/electronics9040603
Zhu H, Huang Z, Shan H, Zhang J (2020) LOOK GLOBALLY , AGE LOCALLY : FACE AGING WITH AN ATTENTION MECHANISM Haiping Zhu Zhizhong Huang Hongming Shan Shanghai Key Lab of Intelligent Information Processing , School of Computer Science , Fudan University , China , 200433. ICASSP 2020 - 2020 IEEE Int Conf Acoust Speech Signal Process 1963–1967
Wu S, Rupprecht C, Vedaldi A (2021) Unsupervised learning of probably symmetric deformable 3D objects from images in the wild. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3076536
Heidekrueger PI, Juran S, Szpalski C et al (2017) The current preferred female lip ratio. J Cranio-Maxillofacial Surg 45:655–660. https://doi.org/10.1016/j.jcms.2017.01.038
Baudoin J, Meuli JN, di Summa PG et al (2019) A comprehensive guide to upper lip aesthetic rejuvenation. J Cosmet Dermatol 18:444–450
Garrido P, Zollhöfer M, Wu C et al (2016) Corrective 3D reconstruction of lips from monocular video. ACM Trans Graph 35:1–11. https://doi.org/10.1145/2980179.2982419
Wu C, Bradley D, Garrido P et al (2016) Model-based teeth reconstruction. ACM Trans Graph 35(6):220–221. https://doi.org/10.1145/2980179.2980233
Wen Q, Xu F, Lu M, Yong JH (2017) Real-time 3D eyelids tracking from semantic edges. ACM Trans Graph 36:1–11. https://doi.org/10.1145/3130800.3130837
Wang C, Shi F, Xia S, Chai J (2016) Realtime 3D eye gaze animation using a single RGB camera. ACM Trans Graph 35:1–14. https://doi.org/10.1145/2897824.2925947
Zhou X, Lin J, Jiang J, Chen S (2019) Learning a 3D gaze estimator with improved itracker combined with bidirectional LSTM. In: Proceedings - IEEE international conference on multimedia and expo. IEEE Computer Society, pp 850–855
Li H, Hu L, Saito S (2020) 3D hair synthesis using volumetric variational autoencoders. ACM Transactions on Graphics (TOG) 37(6):1–12
Ye Z, Li G, Yao B, Xian C (2020) HAO-CNN: filament-aware hair reconstruction based on volumetric vector fields. Comput Animat Virtual Worlds 31:e1945. https://doi.org/10.1002/cav.1945