3D-CSTM: A 3D continuous spatio-temporal mapping method
Tài liệu tham khảo
Anderson, S.W., 2017. Batch continuous-time trajectory estimation. Ph.D. thesis.
Badino, H., Huber, D., Park, Y., Kanade, T., 2011. Fast and accurate computation of surface normals from range images. In: 2011 IEEE International Conference on Robotics and Automation. IEEE, p. 3084–3091.
Barfoot, T.D., Tong, C.H., Särkkä, S., 2014. Batch continuous-time trajectory estimation as exactly sparse gaussian process regression. In: Robotics: Science and Systems. Citeseer; vol. 10.
Berrio, 2021, Camera-lidar integration: Probabilistic sensor fusion for semantic mapping, IEEE Trans. Intell. Transp. Syst., PP, 1
Bisheng, 2017, Progress, challenges and perspectives of 3d lidar point cloud processing, Acta Geodaetica et Cartographica Sinica, 46, 1509
Chang, 2020, Gnss/imu/odo/lidar-slam integrated navigation system using imu/odo pre-integration, Sensors, 20, 4702, 10.3390/s20174702
De Boor, 1978, vol. 27
Dellenbach, P., Deschaud, J.E., Jacquet, B., Goulette, F., 2021. Ct-icp: Real-time elastic lidar odometry with loop closure. arXiv preprint arXiv:210912979.
Deschaud, J.E., 2018. Imls-slam: scan-to-model matching based on 3d data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2480–2485.
Dong, J., Mukadam, M., Boots, B., Dellaert, F., 2018. Sparse gaussian processes on matrix lie groups: A unified framework for optimizing continuous-time trajectories. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6497–6504.
Droeschel, D., Behnke, S., 2018. Efficient continuous-time slam for 3d lidar-based online mapping. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1–9.
Furgale, P., Barfoot, T.D., Sibley, G., 2012. Continuous-time batch estimation using temporal basis functions. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 2088–2095.
Grant, 2019, Efficient velodyne slam with point and plane features, Auton. Robots, 43, 1207, 10.1007/s10514-018-9794-6
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K., 2020. Predator: Registration of 3d point clouds with low overlap.
Jiao, 2021, Robust odometry and mapping for multi-lidar systems with online extrinsic calibration, IEEE Trans. Rob.
Jiao, J., Zhu, Y., Ye, H., Huang, H., Yun, P., Jiang, L., Wang, L., Liu, M., 2021b. Greedy-based feature selection for efficient lidar slam. arXiv preprint arXiv:210313090.
Jingnan, 2019, Data logic structure and key technologies on intelligent high-precision map, Acta Geodaetica et Cartographica Sinica, 48, 15
Kang, 2020, A review of techniques for 3d reconstruction of indoor environments, Int. J. Geo-Informat., 9, 1
Khoshelham, K., Vilariño, L., Peter, M., Kang, Z., Acharya, D., 20107. The isprs benchmark on indoor modelling.
Kim, M.J., Kim, M.S., Shin, S.Y., 1995. A general construction scheme for unit quaternion curves with simple high order derivatives. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. pp. 369–376.
Le Gentil, 2020, In2laama: Inertial lidar localization autocalibration and mapping, IEEE Trans. Rob.
Li, 2020, Slam integrated mobile mapping system in complex urban environments, ISPRS J. Photogramm. Remote Sens., 166, 316, 10.1016/j.isprsjprs.2020.05.012
Lin, J., Zhang, F., 2020. Loam livox: A fast, robust, high-precision lidar odometry and mapping package for lidars of small fov. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3126–3131.
Lin, J., Zheng, C., Xu, W., Zhang, F., 2021. R2live: A robust, real-time, lidar-inertial-visual tightly-coupled state estimator and mapping.
Lovegrove, S., Patron-Perez, A., Sibley, G., 2013. Spline fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In: BMVC. vol. 2, pp. 8.
Lv, J., Xu, J., Hu, K., Liu, Y., Zuo, X., 2020. Targetless calibration of lidar-imu system based on continuous-time batch estimation. arXiv preprint arXiv:200714759.
Moon, 2019, Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3d world model for smart heavy equipment planning, Automat. Construct., 98, 322, 10.1016/j.autcon.2018.07.020
Neuhaus, 2018, Mc2slam: Real-time inertial lidar odometry using two-scan motion compensation, 60
Pan, Y., Xiao, P., He, Y., Shao, Z., Li, Z., 2021. Mulls: Versatile lidar slam via multi-metric linear least square. arXiv preprint arXiv:210203771.
Park, C., Moghadam, P., Kim, S., Elfes, A., Fookes, C., Sridharan, S., 2018. Elastic lidar fusion: Dense map-centric continuous-time slam. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. pp. 1206–1213.
Park, 2021, Elasticity meets continuous-time: Map-centric dense 3d lidar slam, IEEE Trans. Rob.
Qin, K., 1998. General matrix representations for b-splines. In: Proceedings Pacific Graphics’ 98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No. 98EX208). IEEE, pp. 37–43.
Qu, C., Shivakumar, S.S., Liu, W., Taylor, C.J., 2021. Llol: Low-latency odometry for spinning lidars. arXiv preprint arXiv:211001725.
Rusu, 2008, Towards 3d point cloud based object maps for household environments, Robot. Auton. Syst., 56, 927, 10.1016/j.robot.2008.08.005
Schwarz, 2010, Mapping the world in 3d, Nat. Photonics, 4, 429, 10.1038/nphoton.2010.148
Shan, T., Englot, B., 2018. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4758–4765.
Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D., 2020. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. arXiv preprint arXiv:200700258.
Shan, T., Englot, B., Ratti, C., Rus, D., 2021. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping.
Sheehan, M., Harrison, A., Newman, P., 2013. Continuous vehicle localisation using sparse 3d sensing, kernelised rényi distance and fast gauss transforms. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 398–405.
Sommer, C., Usenko, V., Schubert, D., Demmel, N., Cremers, D., 2020. Efficient derivative computation for cumulative b-splines on lie groups. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11148–11156.s.
Su, 2021, Gr-loam: Lidar-based sensor fusion slam for ground robots on complex terrain, Robot. Auton. Syst., 140, 103759, 10.1016/j.robot.2021.103759
Wang, C., Dai, Y., Elsheimy, N., Wen, C., Lingua, A., 2020. Isprs benchmark on multisensory indoor mapping and positioning.
Wang, 2021, A high-accuracy indoor localization system and applications based on tightly coupled uwb/ins/floor map integration, IEEE Sens. J., PP
Whelan, 2015, A. Elasticfusion: Dense slam without a pose graph, Robot.: Sci. Syst.
Yan, 2017, Incremental sparse gp regression for continuous-time trajectory estimation and mapping, Robot. Autono. Syst., 87, 120, 10.1016/j.robot.2016.10.004
Yang, 2015, Hierarchical extraction of urban objects from mobile laser scanning data, ISPRS J. Photogramm. Remote Sens., 99, 45, 10.1016/j.isprsjprs.2014.10.005
Yang, S., Zhu, X., Nian, X., Feng, L., Qu, X., Mal, T., 2018. A robust pose graph approach for city scale lidar mapping. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1175–1182.
Zhang, J., Kaess, M., Singh, S., 2016. On degeneracy of optimization-based state estimation problems. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 809–816.
Zhang, 2017, Low-drift and real-time lidar odometry and mapping, Auton. Robots, 41, 401, 10.1007/s10514-016-9548-2
Zhou, 2021, T-loam: Truncated least squares lidar-only odometry and mapping in real time, IEEE Trans. Geosci. Remote Sens.