3D-CSTM: A 3D continuous spatio-temporal mapping method

ISPRS Journal of Photogrammetry and Remote Sensing - Tập 186 - Trang 232-245 - 2022
Yangzi Cong1,2, Chi Chen1,2, Bisheng Yang1,2, Jianping Li1,2, Weitong Wu1,2, Yuhao Li1,2, Yandi Yang1,2
1Engineering Research Center of Space-Time Data Capturing and Smart Application, the Ministry of Education of P.R.C., PR China
2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Tài liệu tham khảo

Anderson, S.W., 2017. Batch continuous-time trajectory estimation. Ph.D. thesis. Badino, H., Huber, D., Park, Y., Kanade, T., 2011. Fast and accurate computation of surface normals from range images. In: 2011 IEEE International Conference on Robotics and Automation. IEEE, p. 3084–3091. Barfoot, T.D., Tong, C.H., Särkkä, S., 2014. Batch continuous-time trajectory estimation as exactly sparse gaussian process regression. In: Robotics: Science and Systems. Citeseer; vol. 10. Berrio, 2021, Camera-lidar integration: Probabilistic sensor fusion for semantic mapping, IEEE Trans. Intell. Transp. Syst., PP, 1 Bisheng, 2017, Progress, challenges and perspectives of 3d lidar point cloud processing, Acta Geodaetica et Cartographica Sinica, 46, 1509 Chang, 2020, Gnss/imu/odo/lidar-slam integrated navigation system using imu/odo pre-integration, Sensors, 20, 4702, 10.3390/s20174702 De Boor, 1978, vol. 27 Dellenbach, P., Deschaud, J.E., Jacquet, B., Goulette, F., 2021. Ct-icp: Real-time elastic lidar odometry with loop closure. arXiv preprint arXiv:210912979. Deschaud, J.E., 2018. Imls-slam: scan-to-model matching based on 3d data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2480–2485. Dong, J., Mukadam, M., Boots, B., Dellaert, F., 2018. Sparse gaussian processes on matrix lie groups: A unified framework for optimizing continuous-time trajectories. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6497–6504. Droeschel, D., Behnke, S., 2018. Efficient continuous-time slam for 3d lidar-based online mapping. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1–9. Furgale, P., Barfoot, T.D., Sibley, G., 2012. Continuous-time batch estimation using temporal basis functions. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 2088–2095. Grant, 2019, Efficient velodyne slam with point and plane features, Auton. Robots, 43, 1207, 10.1007/s10514-018-9794-6 Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K., 2020. Predator: Registration of 3d point clouds with low overlap. Jiao, 2021, Robust odometry and mapping for multi-lidar systems with online extrinsic calibration, IEEE Trans. Rob. Jiao, J., Zhu, Y., Ye, H., Huang, H., Yun, P., Jiang, L., Wang, L., Liu, M., 2021b. Greedy-based feature selection for efficient lidar slam. arXiv preprint arXiv:210313090. Jingnan, 2019, Data logic structure and key technologies on intelligent high-precision map, Acta Geodaetica et Cartographica Sinica, 48, 15 Kang, 2020, A review of techniques for 3d reconstruction of indoor environments, Int. J. Geo-Informat., 9, 1 Khoshelham, K., Vilariño, L., Peter, M., Kang, Z., Acharya, D., 20107. The isprs benchmark on indoor modelling. Kim, M.J., Kim, M.S., Shin, S.Y., 1995. A general construction scheme for unit quaternion curves with simple high order derivatives. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. pp. 369–376. Le Gentil, 2020, In2laama: Inertial lidar localization autocalibration and mapping, IEEE Trans. Rob. Li, 2020, Slam integrated mobile mapping system in complex urban environments, ISPRS J. Photogramm. Remote Sens., 166, 316, 10.1016/j.isprsjprs.2020.05.012 Lin, J., Zhang, F., 2020. Loam livox: A fast, robust, high-precision lidar odometry and mapping package for lidars of small fov. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3126–3131. Lin, J., Zheng, C., Xu, W., Zhang, F., 2021. R2live: A robust, real-time, lidar-inertial-visual tightly-coupled state estimator and mapping. Lovegrove, S., Patron-Perez, A., Sibley, G., 2013. Spline fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In: BMVC. vol. 2, pp. 8. Lv, J., Xu, J., Hu, K., Liu, Y., Zuo, X., 2020. Targetless calibration of lidar-imu system based on continuous-time batch estimation. arXiv preprint arXiv:200714759. Moon, 2019, Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3d world model for smart heavy equipment planning, Automat. Construct., 98, 322, 10.1016/j.autcon.2018.07.020 Neuhaus, 2018, Mc2slam: Real-time inertial lidar odometry using two-scan motion compensation, 60 Pan, Y., Xiao, P., He, Y., Shao, Z., Li, Z., 2021. Mulls: Versatile lidar slam via multi-metric linear least square. arXiv preprint arXiv:210203771. Park, C., Moghadam, P., Kim, S., Elfes, A., Fookes, C., Sridharan, S., 2018. Elastic lidar fusion: Dense map-centric continuous-time slam. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. pp. 1206–1213. Park, 2021, Elasticity meets continuous-time: Map-centric dense 3d lidar slam, IEEE Trans. Rob. Qin, K., 1998. General matrix representations for b-splines. In: Proceedings Pacific Graphics’ 98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No. 98EX208). IEEE, pp. 37–43. Qu, C., Shivakumar, S.S., Liu, W., Taylor, C.J., 2021. Llol: Low-latency odometry for spinning lidars. arXiv preprint arXiv:211001725. Rusu, 2008, Towards 3d point cloud based object maps for household environments, Robot. Auton. Syst., 56, 927, 10.1016/j.robot.2008.08.005 Schwarz, 2010, Mapping the world in 3d, Nat. Photonics, 4, 429, 10.1038/nphoton.2010.148 Shan, T., Englot, B., 2018. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4758–4765. Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D., 2020. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. arXiv preprint arXiv:200700258. Shan, T., Englot, B., Ratti, C., Rus, D., 2021. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. Sheehan, M., Harrison, A., Newman, P., 2013. Continuous vehicle localisation using sparse 3d sensing, kernelised rényi distance and fast gauss transforms. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 398–405. Sommer, C., Usenko, V., Schubert, D., Demmel, N., Cremers, D., 2020. Efficient derivative computation for cumulative b-splines on lie groups. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11148–11156.s. Su, 2021, Gr-loam: Lidar-based sensor fusion slam for ground robots on complex terrain, Robot. Auton. Syst., 140, 103759, 10.1016/j.robot.2021.103759 Wang, C., Dai, Y., Elsheimy, N., Wen, C., Lingua, A., 2020. Isprs benchmark on multisensory indoor mapping and positioning. Wang, 2021, A high-accuracy indoor localization system and applications based on tightly coupled uwb/ins/floor map integration, IEEE Sens. J., PP Whelan, 2015, A. Elasticfusion: Dense slam without a pose graph, Robot.: Sci. Syst. Yan, 2017, Incremental sparse gp regression for continuous-time trajectory estimation and mapping, Robot. Autono. Syst., 87, 120, 10.1016/j.robot.2016.10.004 Yang, 2015, Hierarchical extraction of urban objects from mobile laser scanning data, ISPRS J. Photogramm. Remote Sens., 99, 45, 10.1016/j.isprsjprs.2014.10.005 Yang, S., Zhu, X., Nian, X., Feng, L., Qu, X., Mal, T., 2018. A robust pose graph approach for city scale lidar mapping. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1175–1182. Zhang, J., Kaess, M., Singh, S., 2016. On degeneracy of optimization-based state estimation problems. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 809–816. Zhang, 2017, Low-drift and real-time lidar odometry and mapping, Auton. Robots, 41, 401, 10.1007/s10514-016-9548-2 Zhou, 2021, T-loam: Truncated least squares lidar-only odometry and mapping in real time, IEEE Trans. Geosci. Remote Sens.