3-Fold log models

Journal of Mathematical Sciences - Tập 81 Số 3 - Trang 2667-2699 - 1996
V. V. Shokurov

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. Alexeev, “Two two-dimensional terminations”,Duke Math. J.,69, No. 3, 527–545 (1993).

A. Borisov,Minimal discrepancies of toric singularities, Algebraic Geometry E-prints.

J. W. S. Cassels,An Introduction to Diophantine Approximations, Cambridge University Press (1957).

H. Clemens, J. Kollár, and S. Mori, “Higher dimensional complex geometry”,Astérisque,166, Soc. Math. France (1988).

A. Corti,Factoring Birational Maps of Threefolds After Sarkisov, preprint.

Y. Kawamata, “Crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces”,Ann. Math. (2),127, 93–163 (1988).

Y. Kawamata, “On the length of an extremal rational curve”,Invent. Math.,105, No. 3, 609–611 (1991).

Y. Kawamata, “The minimal discrepancy coefficients of terminal singularities of dimension 3”, Appendix to [26],Izv. Akad. Nauk SSSR. Ser. Mat.,56, No. 1, 201–203 (1992).

Y. Kawamata, “Abundance theorem for minimal threefolds”,Inv. Math.,108, 229–246 (1992).

Y. Kawamata, “Termination of log flips for algebraic 3-folds”,Int. J. Math.,3, No. 5, 653–659 (1992).

Y. Kawamata, K. Matsuda, and K. Matsuki, “Minimal model problem”, In:Adv. Stud. Pure Math., Vol. 10, Kinokuniya Company (1987), pp. 283–360.

S. Keel, K. Matsuki, and J. McKernan, “Log abundance theorem for threefolds”,Duke Math. J.,75, No. 1, 99–119 (1994).

J. Kollár, “The Cone theorem: Note to Kawamata's ‘The cone of curves of algebraic varieties’”,Ann. Math.,120, 1–5 (1984).

J. Kollár and S. Mori,Classification of Three-Dimensional Flips, preprint.

J. Kollár et al., “Flips and abundance for algebraic threefolds”, A Summer Seminar at the University of Utah, Salt Lake City, 1991,Asterisque,211 (1992).

T. Luo,On the Divisorial Extremal Contractions of Threefolds: Divisor to a Point, preprint.

Y. Miyaoka, “Abundance conjecture for 3-folds:v=1 case”,Comp. Math.,68, 203–220 (1988).

V. V. Nikulin,Diagram Method for 3-Folds and Its Application to Kähler Cone and Picard Number of Calabi-Yau 3-Folds. I, preprint alg-geom/9401010.

M. Reid, “Minimal models of canonical threefolds”, In:Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., Vol. 1, Kinokuniya and North Holland (1983), pp. 131–180.

M. Reid, “Young person's guide to canonical singularities”,Proc. Symp. Pure Math.,46:1, 345–414 (1987).

M. Reid,Birational Geometry of 3-Folds According to Sarkisov, preprint (1991).

V. G. Sarkisov,Birational Maps of Standard ℚ-Fano Fiberings, I. V. Kurchatov Institute Atomic Energy preprint (1989).

V. V. Shokurov, “A nonvanishing theorem”,Izv. Akad. Nauk SSSR. Ser. Mat.,49, 635–651 (1985).

V. V. Shokurov, “Problems about Fano varieties”, In:Birational Geometry of Algebraic Varieties: Open problems. The XXIIIrd International Symposium, Division of Mathematics, The Taniguchi Foundation. Aug. 22–27, 1988, pp. 30–32.

V. V. Shokurov,Special 3-Dimensional Flips, preprint, MPI/89-22.

V. V. Shokurov, “3-Fold log flips”,Izv. Akad. Nauk SSSR. Ser. Mat.,56, No. 1, 105–201 (1992).

V. V. Shokurov, “Anticanonical boundedness for curves”, Appendix to [18].

V. V. Shokurov, “Semi-stable 3-fold flips”,Izv. Akad. Nauk SSSR. Ser. Mat.,57, No. 2, 162–224 (1993).

V. V. Shokurov,A.c.c. of m.l.d., preprint.

O. Zariski and P. Samuel,Commutative Algebra, I, II, Van Nostrand, Princeton (1958, 1960).