3-D Printing by Laser-Assisted Direct Energy Deposition (LDED): The Present Status
Tóm tắt
Laser-assisted direct energy deposition (LDED) is an additive manufacturing technology which involves melting/fusion of materials in the form of powder or wire using laser as a focused heat source and its deposition in a layer-by-layer fashion on a dummy substrate to build the product in its final shape by one-step processing. LDED is a very important technology for obtaining component with extreme precision and with minimum loss of material and a flexible one to build component of any kind including metal/alloys, metal matrix composites, and intermetallics. LDED may be categorized in to laser engineered net shaping, laser metal deposition, direct metal deposition, and direct metal printing. In the present contribution, a detailed discussion on the principle of LDED, role of process parameters in influencing the properties, and the present status on the application of LDED for the fabrication of metallic, metal matrix composite, and intermetallics will be discussed in details. Finally, the future scope of research on LDED will be presented.
Tài liệu tham khảo
Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1:77–86. https://doi.org/10.1016/j.addma.2014.08.001
Aboulkhair NT, Everitt NM, Maskery I, Ashcroft I, Tuck C (2017) Selective laser melting of aluminum alloys. MRS Bull 42(4):311–319. https://doi.org/10.1557/mrs.2017.63
Aguilara J, Schievenbuschb A, Kättlitzc O (2011) Qualification of a casting technology for production of titanium aluminide components for aero-engine applications. Adv Mater Res 278:563–568. https://doi.org/10.4028/www.scientific.net/AMR.278.563
Alafaghani A, Qattawi A, Castañón MAG (2018) Effect of manufacturing parameters on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals. Int J Adv Manuf Technol 99(9–12):2491–2507. https://doi.org/10.1007/s00170-018-2586-5
Alam MK, Edrisy A, Urbanic J, Pineault J (2017) Microhardness and stress analysis of laser-cladded AISI 420 martensitic stainless steel. J Mater Eng Perform 26(3):1076–1084. https://doi.org/10.1007/s11665-017-2541-x
Alam MK, Urbanic RJ, Nazemi N, Edrisy A (2018) Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel. Int J Adv Manuf Technol 94(1–4):397–413. https://doi.org/10.1007/s00170-017-0898-5
Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U, Müllauer J, Oehring M, Paul JDH (2000) Recent progress in the development of gamma titanium aluminide alloys. Adv Eng Mater 2(11):699–720. https://doi.org/10.1002/1527-2648(200011)2:11%3c699::AID-ADEM699%3e3.0.CO;2-J
Bajaj P, Hariharan A, Kini A, Kürnsteiner P, Raabe D, Jägle EA (2020) Steels in additive manufacturing: a review of their microstructure and properties. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2019.138633
Balu P, Leggett P, Hamid S, Kovacevic R (2013) Multi-response optimization of laser-based powder deposition of multi-track single layer hastelloy C-276. Mater Manuf Processes 28(2):173–182. https://doi.org/10.1080/10426914.2012.677908
Barsoum MW, El-Raghy T (1996) Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc 79(7):1953–1956. https://doi.org/10.1111/j.1151-2916.1996.tb08018.x
Bi G, Sun CN, Chen HC, Ng FL, Ma CCK (2014) Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Mater Design 60:401–408. https://doi.org/10.1016/j.matdes.2014.04.020
Calleja A, Tabernero I, Fernández A, Celaya A, Lamikiz A, López De Lacalle LN (2014) Improvement of strategies and parameters for multi-axis laser cladding operations. Opt Lasers Eng 56:113–120. https://doi.org/10.1016/j.optlaseng.2013.12.017
Calleja A, Tabernero I, Ealo JA, Campa FJ, Lamikiz A, de Lacalle LNL (2014) Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding. Int J Adv Manuf Technol 74(9–12):1219–1228. https://doi.org/10.1007/s00170-014-6057-3
Campanelli SL, Angelastro A, Signorile CG, Casalino G (2017) Investigation on direct laser powder deposition of 18 Ni (300) marage steel using mathematical model and experimental characterisation. Int J Adv Manuf Technol 89(1–4):885–895. https://doi.org/10.1007/s00170-016-9135-x
Cárcel B, Serrano A, Zambrano J, Amigó V, Cárcel AC (2014) Laser cladding of TiAl intermetallic alloy on Ti6Al4V Process optimization and properties. Phys Proc 56(C):284–293. https://doi.org/10.1016/j.phpro.2014.08.173
Carneiro L, Jalalahmadi B, Ashtekar A, Jiang Y (2019) Cyclic deformation and fatigue behavior of additively manufactured 17–4 PH stainless steel. Int J Fatigue 123(January):22–30. https://doi.org/10.1016/j.ijfatigue.2019.02.006
Chan KS, Kim YW (1992) Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall Trans A 23(6):1663–1677. https://doi.org/10.1007/BF02804362
Cheruvathur S, Lass EA, Campbell CE (2016) Additive manufacturing of 17–4 PH stainless steel: post-processing heat treatment to achieve uniform reproducible microstructure. Jom 68(3):930–942. https://doi.org/10.1007/s11837-015-1754-4
Chua CK, Leong KF (2014) 3D printing and additive manufacturing. 3D printing and additive manufacturing technologies. World Scientific, Singapore. https://doi.org/10.1142/9008
Dev Singh D, Mahender T, Raji Reddy A (2020) Powder bed fusion process: a brief review. Mater Today Proc Xxxx:2–7. https://doi.org/10.1016/j.matpr.2020.08.415
Doñate-Buendía C, Frömel F, Wilms MB, Streubel R, Tenkamp J, Hupfeld T, Nachev M, Gökce E, Weisheit A, Barcikowski S, Walther F, Schleifenbaum JH, Gökce B (2018) Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Mater Des 154:360–369. https://doi.org/10.1016/j.matdes.2018.05.044
Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928. https://doi.org/10.1007/s11665-014-0958-z
Fujishima M, Oda Y, Ashida R, Takezawa K, Kondo M (2017) Study on factors for pores and cladding shape in the deposition processes of Inconel 625 by the directed energy deposition (DED) method. CIRP J Manuf Sci Technol 19:200–204. https://doi.org/10.1016/j.cirpj.2017.04.003
Ganesh P, Giri R, Kaul R, Ram Sankar P, Tiwari P, Atulkar A, Porwal RK, Dayal RK, Kukreja LM (2012) Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel. Mater Des 39:509–521. https://doi.org/10.1016/j.matdes.2012.03.011
Goodarzi DM, Pekkarinen J, Salminen A (2017) Analysis of laser cladding process parameter influence on the clad bead geometry. Welding World 61(5):883–891. https://doi.org/10.1007/s40194-017-0495-0
Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Proc 39:376–381. https://doi.org/10.1016/j.phpro.2012.10.051
Gu D, Rao X, Dai D, Ma C, Xi L, Lin K (2019) Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: processing optimization, microstructure evolution and mechanical properties. Addit Manuf 29(July):100801. https://doi.org/10.1016/j.addma.2019.100801
Guo Z, Kindt JT (2018) Partitioning of size-mismatched impurities to grain boundaries in 2d solid hard-sphere monolayers. Langmuir 34(43):12947–12956. https://doi.org/10.1021/acs.langmuir.8b02633
Haemers TAM, Rickerby DG, Lanza F, Geiger F, Mittemeijer EJ (2001) Laser cladding of stainless steel with Hastelloy. Adv Eng Mater 3(4):242–245. https://doi.org/10.1002/1527-2648(200104)3:4%3c242::AID-ADEM242%3e3.0.CO;2-D
Han Y, Lu W, Jarvis T, Shurvinton J, Wu X (2015) Investigation on the microstructure of direct laser additive manufactured Ti6Al4V alloy. Mater Res 18:24–28. https://doi.org/10.1590/1516-1439.322214
Han Q, Setchi R, Lacan F, Gu D, Evans SL (2017) Selective laser melting of advanced Al-Al2O3 nanocomposites: simulation, microstructure and mechanical properties. Mater Sci Eng A 698(May):162–173. https://doi.org/10.1016/j.msea.2017.05.061
Hong C, Gu D, Dai D, Gasser A, Weisheit A, Kelbassa I, Zhong M, Poprawe R (2013) Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Opt Laser Technol 54:98–109. https://doi.org/10.1016/j.optlastec.2013.05.011
Hu YN, Wu SC, Withers PJ, Zhang J, Bao HYX, Fu YN, Kang GZ (2020) The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Mater Des 192:108708. https://doi.org/10.1016/j.matdes.2020.108708
Hunt J, Derguti F, Todd I (2014) Selection of steels suitable for additive layer manufacturing. Ironmaking Steelmaking 41(4):254–256. https://doi.org/10.1179/0301923314Z.000000000269
Irrinki H, Jangam JSD, Pasebani S, Badwe S, Stitzel J, Kate K, Gulsoy O, Atre SV (2018) Effects of particle characteristics on the microstructure and mechanical properties of 17–4 PH stainless steel fabricated by laser-powder bed fusion. Powder Technol 331:192–203. https://doi.org/10.1016/j.powtec.2018.03.025
Jägle EA, Sheng Z, Kürnsteiner P, Ocylok S, Weisheit A, Raabe D (2017) Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials. https://doi.org/10.3390/ma10010008
Jinoop AN, Paul CP, Bindra KS (2019) Laser-assisted directed energy deposition of nickel super alloys: a review. Proceed Inst Mech Eng Part L J Mater Design Appl 233(11):2376–2400. https://doi.org/10.1177/1464420719852658
Jinoop AN, Paul CP, Bindra KS (2019) Laser assisted direct energy deposition of Hastelloy-X. Opt Laser Technol 109:14–19. https://doi.org/10.1016/j.optlastec.2018.07.037
Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth JP (2014) Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J Manuf Sci E T ASME 136(6):1–6. https://doi.org/10.1115/1.4028513
Kumar LJ, Nair CGK (2017) Laser metal deposition repair applications for Inconel 718 alloy. Mater Today Proc 4(10):11068–11077. https://doi.org/10.1016/j.matpr.2017.08.068
Lambarri J, Leunda J, García Navas V, Soriano C, Sanz C (2013) Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components. Opt Lasers Eng 51(7):813–821. https://doi.org/10.1016/j.optlaseng.2013.01.011
Lassance D, Fabrègue D, Delannay F, Pardoen T (2007) Micromechanics of room and high temperature fracture in 6xxx Al alloys. Prog Mater Sci 52(1):62–129. https://doi.org/10.1016/j.pmatsci.2006.06.001
Lathabai S (2018) Additive manufacturing of aluminium-based alloys and composites. Fundamentals of aluminium metallurgy. Elsevier, Amsterdam, pp 47–92. https://doi.org/10.1016/B978-0-08-102063-0.00002-3
Lazov L, Angelov N (2010) Physical model about laser impact on metals and alloys. Contemp Mater 1:124–128. https://doi.org/10.5767/anurs.cmat.100102.en.114L
Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim Y-J (2017) Lasers in additive manufacturing: a review. Int J Precis Eng Manuf Green Technol 4(3):307–322. https://doi.org/10.1007/s40684-017-0037-7
Lee JY, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133. https://doi.org/10.1016/j.apmt.2017.02.004
Lei Z, Bi J, Chen Y, Chen X, Qin X, Tian Z (2019) Effect of energy density on formability, microstructure and micro-hardness of selective laser melted Sc- and Zr- modified 7075 aluminum alloy. Powder Technol 356:594–606. https://doi.org/10.1016/j.powtec.2019.08.082
Li J, Wang HM, Tang HB (2012) Effect of heat treatment on microstructure and mechanical properties of laser melting deposited Ni-base superalloy Rene’41. Mater Sci Eng A 550:97–102. https://doi.org/10.1016/j.msea.2012.04.037
Li XP, Ji G, Chen Z, Addad A, Wu Y, Wang HW, Vleugels J, Van Humbeeck J, Kruth JP (2017) Selective laser melting of nano-TiB2decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater 129:183–193. https://doi.org/10.1016/j.actamat.2017.02.062
Liang J, Liu Y, Li J, Zhou Y, Sun X (2019) Epitaxial growth and oxidation behavior of an overlay coating on a Ni-base single-crystal superalloy by laser cladding. J Mater Sci Technol 35(2):344–350. https://doi.org/10.1016/j.jmst.2018.10.011
Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552
López-Castro JD, Marchal A, González L, Botana J (2017) Topological optimization and manufacturing by direct metal laser sintering of an aeronautical part in 15–5PH stainless steel. Proc Manuf 13:818–824. https://doi.org/10.1016/j.promfg.2017.09.121
Lu E, Palazott A, Dempsey A, Abraham R (2017) Analysis of the effects of additive manufacturing on the material properties of 15-5PH stainless steel. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2017, pp 4–7. https://doi.org/10.2514/6.2017-1142
Majumdar JD, Indranil M (2013) Laser-assisted fabrication of materials. In: Majumdar JD, Manna I (eds) Springer series in material science, vol 161. Springer, Berlin. https://doi.org/10.1007/978-3-642-28359-8
Majumdar JD, Li L (2009) Studies on direct laser cladding of SiC dispersed AISI 316L stainless steel. Metall Mater Trans A 40(12):3001–3008. https://doi.org/10.1007/s11661-009-0018-8
Majumdar JD, Manna I (2011) Laser material processing. Int Mater Rev 56(5–6):341–388. https://doi.org/10.1179/1743280411Y.0000000003
Majumdar JD, Pinkerton A, Liu Z, Manna I, Li L (2005a) Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel. Appl Surf Sci 247(1–4):373–377. https://doi.org/10.1016/j.apsusc.2005.01.131
Majumdar JD, Pinkerton A, Liu Z, Manna I, Li L (2005b) Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel. Appl Surf Sci 247(1–4):320–327. https://doi.org/10.1016/j.apsusc.2005.01.039
Majumdar JD, Manna I, Kumar A, Bhargava P, Nath AK (2009) Direct laser cladding of Co on Ti-6Al-4V with a compositionally graded interface. J Mater Process Technol 209(5):2237–2243. https://doi.org/10.1016/j.jmatprotec.2008.05.017
Majumdar JD, Rittinghaus SK, Wissenbach K, Höche D, Blawert C, Weisheit A (2019) Microstructural evolution and microhardness of direct laser clad tic dispersed titanium aluminide (Ti45Al5Nb0.5Si) alloy. Proc Manuf 35:840–846. https://doi.org/10.1016/j.promfg.2019.06.030
Man C, Dong C, Liu T, Kong D, Wang D, Li X (2019) The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci 467–468(October 2018):193–205. https://doi.org/10.1016/j.apsusc.2018.10.150
Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549(7672):365–369. https://doi.org/10.1038/nature23894
Milewski JO, Dickerson PG, Nemec RB, Lewis GK, Fonseca JC (1999) Application of a manufacturing model for the optimization of additive processing of Inconel alloy 690. J Mater Process Technol 91(1):18–28. https://doi.org/10.1016/S0924-0136(98)00412-9
Mumtaz K, Hopkinson N (2009) Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J 15(2):96–103. https://doi.org/10.1108/13552540910943397
Nam S, Cho H, Kim C, Kim YM (2018) Effect of process parameters on deposition properties of functionally graded STS 316/Fe manufactured by laser direct metal deposition. Metals. https://doi.org/10.3390/met8080607
Nezhadfar PD, Shrestha R, Phan N, Shamsaei N (2019) Fatigue behavior of additively manufactured 17–4 PH stainless steel: synergistic effects of surface roughness and heat treatment. Int J Fatigue 124(December 2018):188–204. https://doi.org/10.1016/j.ijfatigue.2019.02.039
Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143(February):172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
Niu X, Singh S, Garg A, Singh H, Panda B, Peng X, Zhang Q (2019) Review of materials used in laser-aided additive manufacturing processes to produce metallic products. Front Mech Eng 14(3):282–298. https://doi.org/10.1007/s11465-019-0526-1
Ocylok S, Weisheit A, Kelbassa I (2011) Increased wear and oxidation resistance of titanium aluminide alloys by laser cladding. Adv Mater Res 278:515–520. http://doi.org/10.4028/www.scientific.net/AMR.278.515
Onuike B, Bandyopadhyay A (2018) Additive manufacturing of Inconel 718—Ti6Al4V bimetallic structures. Addit Manuf 22(July):844–851. https://doi.org/10.1016/j.addma.2018.06.025
Pal S, Tiyyagura HR, Drstvenšek I, Kumar CS (2016) The effect of post-processing and machining process parameters on properties of stainless steel PH1 product produced by direct metal laser sintering. Proc Eng 149(June):359–365. https://doi.org/10.1016/j.proeng.2016.06.679
Paul CP, Mishra SK, Premsingh CH, Bhargava P, Tiwari P, Kukreja LM (2012) Studies on laser rapid manufacturing of cross-thin-walled porous structures of Inconel 625. Int J Adv Manuf Technol 61(5–8):757–770. https://doi.org/10.1007/s00170-011-3742-3
Paul CP, Jinoop AN, Kumar A, Bindra KS (2021) Laser-based metal additive manufacturing: technology, global scenario and our experiences. Trans Indian Natl Acad Eng. https://doi.org/10.1007/s41403-021-00228-9
Pinkerton AJ, Karadge M, Ul Haq Syed W, Li L (2006) Thermal and microstructural aspects of the laser direct metal deposition of waspaloy. J Laser Appl 18(3):216–226. https://doi.org/10.2351/1.2227018
Prashanth KG, Eckert J (2017) Formation of metastable cellular microstructures in selective laser melted alloys. J Alloy Compd 707:27–34. https://doi.org/10.1016/j.jallcom.2016.12.209
Qi T, Zhu H, Zhang H, Yin J, Ke L, Zeng X (2017) Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater Des 135:257–266. https://doi.org/10.1016/j.matdes.2017.09.014
Qiu C, Adkins NJE, Attallah MM (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A 578:230–239. https://doi.org/10.1016/j.msea.2013.04.099
Rafi HK, Starr TL, Stucker BE (2013) A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15–5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol 69(5–8):1299–1309. https://doi.org/10.1007/s00170-013-5106-7
Ramakrishnan A, Dinda GP (2019) Direct laser metal deposition of Inconel 738. Mater Sci Eng A 740–741(October 2018):1–13. https://doi.org/10.1016/j.msea.2018.10.020
Ramanujan RV (2000) Phase transformations in γ based titanium aluminides. Int Mater Rev 45(6):217–240. https://doi.org/10.1179/095066000101528377
Saqiba S, Urbanica RJ, Aggarwal K (2014) Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia CIRP 17:824–829. https://doi.org/10.1016/j.procir.2014.01.098
Shah K, Haq I, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Mater Design 54:531–538. https://doi.org/10.1016/j.matdes.2013.08.079
Sing SL, Tey CF, Tan JHK, Huang S, Yeong WY (2020) 3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing. Rapid prototyping of biomaterials. Elsevier, Amsterdam, pp 17–40. https://doi.org/10.1016/B978-0-08-102663-2.00002-2
Sun GF, Shen XT, Wang ZD, Zhan MJ, Yao S, Zhou R, Ni ZH (2019) Laser metal deposition as repair technology for 316L stainless steel: influence of feeding powder compositions on microstructure and mechanical properties. Opt Laser Technol 109:71–83. https://doi.org/10.1016/j.optlastec.2018.07.051
Suwas S, Kumar D (2020) Microstructure–texture–mechanical property relationship in alloys produced by additive manufacturing following selective laser melting (SLM) technique. Trans Indian Natl Acad Eng 5(1):1–10. https://doi.org/10.1007/s41403-019-00081-x
Tan C, Zhou K, Kuang M, Ma W, Kuang T (2018) Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci Technol Adv Mater 19(1):746–758. https://doi.org/10.1080/14686996.2018.1527645
Tassin C, Laroudie F, Pons M, Lelait L (1996) Improvement of the wear resistance of 316L stainless steel by laser surface alloying. Surf Coat Technol 80(1–2):207–210. https://doi.org/10.1016/0257-8972(95)02713-0
Thakur A (1997) microstructural responses of a nickel-base cast in-738 superalloy to a variety of pre-weld heat-treatments. Dissertation,The University of Manitoba. https://mspace.lib.umanitoba.ca/xmlui/handle/1993/932
Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58(9):3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004
Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans A 42(10):3190–3199. https://doi.org/10.1007/s11661-011-0731-y
Walker JC, Berggreen KM, Jones AR, Sutcliffe CJ (2009) Fabrication of Fe-Cr-Al oxide dispersion strengthened pm2000 alloy using selective laser melting. Adv Eng Mater 11(7):541–546. https://doi.org/10.1002/adem.200800407
Wang QY, Bai SL, Liu ZD (2014) Corrosion behavior of Hastelloy C22 coating produced by laser cladding in static and cavitation acid solution. Trans Nonferrous Metals Soc China (english Edn) 24(5):1610–1618. https://doi.org/10.1016/S1003-6326(14)63232-5
Wang X, Deng D, Qi M, Zhang H (2016) Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication. Opt Laser Technol 80:138–144. https://doi.org/10.1016/j.optlastec.2016.01.002
Weisheit A, Rittinghaus SK, Dutta A, Majumdar JD (2020) Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide. Opt Lasers Eng 131(January):106041. https://doi.org/10.1016/j.optlaseng.2020.106041
Weisheit A, Dutta A, Rittinghaus SK, Majumdar JD (2021) Structure-property-process parameters correlation of laser additive manufactured TiC dispersed titanium aluminide (Ti45Al5Nb0.5Si) composite. Intermetallics 134:107185. https://doi.org/10.1016/j.intermet.2021.107185
Yang J, Li F, Wang Z, Zeng X (2015) Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. J Mater Process Technol 225:229–239. https://doi.org/10.1016/j.jmatprotec.2015.06.002
Yong CK, Gibbons GJ, Wong CC, West G (2020) A critical review of the material characteristics of additive manufactured IN718 for high-temperature application. Metals 10(12):1576. https://doi.org/10.3390/met10121576
Zhang K, Wang S, Liu W, Shang X (2014) Characterization of stainless steel parts by Laser Metal Deposition Shaping. Mater Des 55:104–119. https://doi.org/10.1016/j.matdes.2013.09.006
Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng (english Edn) 30(3):515–527. https://doi.org/10.1007/s10033-017-0121-5
Zhao X, Wei Q, Song B, Liu Y, Luo X, Wen S, Shi Y (2015) Fabrication and characterization of AISI 420 stainless steel using selective laser melting. Mater Manuf Processes 30(11):1283–1289. https://doi.org/10.1080/10426914.2015.1026351
Zhong C, Kittel J, Gasser A, Schleifenbaum JH (2019) Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition. Optics Laser Technol 109(July 2018):352–360. https://doi.org/10.1016/j.optlastec.2018.08.003
Zhou W, Dong M, Zhou Z, Sun X, Kikuchi K, Nomura N, Kawasaki A (2019) In situ formation of uniformly dispersed Al4C3 nanorods during additive manufacturing of graphene oxide/Al mixed powders. Carbon 141:67–75. https://doi.org/10.1016/j.carbon.2018.09.057
Ziętala M, Durejko T, Polański M, Kunce I, Płociński T, Zieliński W, Łazińska M, Stępniowski W, Czujko T, Kurzydłowski KJ, Bojar Z (2016) The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng A 677:1–10. https://doi.org/10.1016/j.msea.2016.09.028