Biến thể 2q35-rs13387042 và nguy cơ ung thư vú: một nghiên cứu trường hợp - đối chứng

Springer Science and Business Media LLC - Tập 49 - Trang 3549-3557 - 2022
Abolfazl Nesaei1, Zari Naderi Ghale-noie2, Asma Khorshid Shamshiri2, Fahimeh Afzaljavan2, Mahdi Rivandi2, Amir Tajbakhsh2, Fatemeh Homaei Shandiz3, Alireza Pasdar2,4,5
1Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
3Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
4Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
5Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Scienses, Mashhad, Iran

Tóm tắt

Ung thư vú là khối u thường gặp nhất được chẩn đoán ở phụ nữ trên toàn thế giới. Nền tảng di truyền và lối sống/môi trường đóng vai trò quan trọng trong sinh bệnh học của bệnh. Theo các nghiên cứu liên kết toàn bộ bộ gen, một số biến thể nucleotide đơn (SNP) như 2q35-rs13387042–(G/A) đã được xác định có liên quan đến nguy cơ và các đặc điểm của ung thư vú. Trong nghiên cứu này, chúng tôi nhằm mục tiêu đánh giá mối liên quan giữa biến thể này với nguy cơ ung thư vú ở một nhóm phụ nữ Iran. Thông tin nhân khẩu học và lâm sàng được thu thập thông qua phỏng vấn và hồ sơ y tế của bệnh nhân. DNA được chiết xuất từ 506 mẫu máu, bao gồm 184 bệnh nhân và 322 đối chứng, và genotyping được thực hiện bằng phương pháp PCR đặc hiệu alleles. Phần mềm SPSS v16 được sử dụng cho phân tích thống kê. Mối liên quan có ý nghĩa thống kê được quan sát giữa kiểu gen AA và nguy cơ bệnh ở tất cả các bệnh nhân [padj = 0.048; ORadj = 2.13, 95% CI (1.01–4.50)] cũng như ung thư vú dương tính với ER [padj = 0.015; ORadj = 2.12, 95% CI (1.16–3.88)]. Không có mối liên hệ nào giữa rs13387042 và các đặc điểm bệnh học của bệnh. Hơn nữa, thời gian sống còn tổng thể không có sự liên quan thống kê với kiểu gen và các mô hình allele ngay cả sau khi điều chỉnh cho giai đoạn và tình trạng thụ thể (p > 0.05). Có một mối liên hệ có ý nghĩa thống kê giữa 2q35-rs13387042 và nguy cơ ung thư vú. Kiểu gen rs13387042-AA có thể là một yếu tố làm tăng nguy cơ phát triển ung thư vú trong quần thể Iran. Tuy nhiên, cần xem xét thêm để xác nhận vai trò của nó trong đánh giá nguy cơ và khả năng liên kết với các dấu hiệu di truyền khác.

Từ khóa

#ung thư vú #biến thể di truyền #rs13387042 #mối liên quan #nghiên cứu trường hợp - đối chứng

Tài liệu tham khảo

Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46 Taghavi A, Fazeli Z, Vahedi M, Baghestani AR, Pourhoseingholi A, Barzegar F et al (2012) Increased trend of breast cancer mortality in Iran. Asian Pac J Cancer Prev 13(1):367–370 Aghababazadeh M, Dorraki N, Javan FA, Fattahi AS, Gharib M, Pasdar A (2017) Downregulation of Caspase 8 in a group of Iranian breast cancer patients—a pilot study. J Egypt Natl Cancer Inst 29(4):191–195 Bagherabad MB, Afzaljavan F, Vahednia E, Rivandi M, Vakili F, Sadr SSH et al (2019) Association of caspase 8 promoter variants and haplotypes with the risk of breast cancer and its molecular profile in an Iranian population: a case-control study. J Cell Biochem 120(10):16435–16444 Vahednia E, Shandiz FH, Bagherabad MB, Moezzi A, Afzaljavan F, Tajbakhsh A et al (2019) The impact of CASP8 rs10931936 and rs1045485 polymorphisms as well as the haplotypes on breast cancer risk: a case-control study. Clin Breast Cancer 19(5):e563–e577 Azarkish F, Mirzaii Najmabadi K, Latifnejad Roudsari R, Homaei Shandiz F (2015) Factors related to return to work in women after breast cancer in Iran. Iran Red Crescent Med J 17(9):e19978 Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM et al (2017) Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem 118(9):2502–2515 Shamshiri AK, Afzaljavan F, Alidoust M, Taherian V, Vakili F, Moezzi A et al (2020) ESR1 gene variants, haplotypes and diplotypes may influence the risk of breast cancer and mammographic density. Mol Biol Rep 47(11):8367–8375 Lerebours F, Lidereau R (2002) Molecular alterations in sporadic breast cancer. Crit Rev Oncol Hematol 44(2):121–141 Alidoust M, Shamshiri AK, Tajbakhsh A, Gheibihayat SM, Mazloom SM, Alizadeh F et al (2021) The significant role of a functional polymorphism in the NF-κB1 gene in breast cancer: evidence from an Iranian cohort. Future Oncol 17(35):4895–4905 Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G et al (2020) Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 52:572–581 Gu C, Zhou L, Yu J (2013) Quantitative assessment of 2q35-rs13387042 polymorphism and hormone receptor status with breast cancer risk. PLoS ONE 8(7):e66979 Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer. Nat Genet 39(7):865–869 Elematore I, Gonzalez-Hormazabal P, Reyes JM, Blanco R, Bravo T, Peralta O et al (2014) Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population. Mol Biol Rep 41(6):3715–3722 Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874 Liang H, Li H, Yang X, Chen L, Zhu A, Sun M et al (2016) Associations of genetic variants at nongenic susceptibility loci with breast cancer risk and heterogeneity by tumor subtype in Southern Han Chinese women. BioMed Res Int. https://doi.org/10.1155/2016/3065493 Wyszynski A, Hong CC, Lam K, Michailidou K, Lytle C, Yao S et al (2016) An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet 25(17):3863–3876 Zheng W, Cai Q, Signorello LB, Long J, Hargreaves MK, Deming SL et al (2009) Evaluation of 11 breast cancer susceptibility loci in African-American women. Cancer Epidemiol Biomark Prev. https://doi.org/10.1158/1055-9965.EPI-09-0624 Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41(5):579–584 Liang H, Yang X, Chen L, Li H, Zhu A, Sun M et al (2015) Heterogeneity of breast cancer associations with common genetic variants in FGFR2 according to the intrinsic subtypes in Southern Han Chinese Women. Biomed Res Int. https://doi.org/10.1155/2015/626948 Fejerman L, Stern MC, John EM, Torres-Mejia G, Hines LM, Wolff RK et al (2015) Interaction between common breast cancer susceptibility variants, genetic ancestry, and nongenetic risk factors in Hispanic women. Cancer Epidemiol Biomark Prev 24(11):1731–1738 Dai J, Hu Z, Jiang Y, Shen H, Dong J, Ma H et al (2012) Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women. Breast Cancer Research: BCR 14(1):R17 Deng N, Zhou H, Fan H, Yuan Y (2017) Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 8(66):110635 Tajbakhsh A, Afzal Javan F, Fazeli M, Rivandi M, Kushyar MM, Nassiri M et al (2017) TOX3 Gene polymorphisms and breast cancer; effects and implications of the variations. Tehran Univ Med J TUMS Publications 75(5):323–331 Fagny M, Platig J, Kuijjer ML, Lin X, Quackenbush J (2020) Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function. Br J Cancer 122(4):569–577 Shan J, Mahfoudh W, Dsouza SP, Hassen E, Bouaouina N, Abdelhak S et al (2012) Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians. Breast Cancer Res Treat 135(3):715–724 Huang T, Hong J, Lin WL, Yang QQ, Ni KL, Wu QY et al (2013) Assessing interactions between common genetic variant on 2q35 and hormone receptor status with breast cancer risk: evidence based on 26 studies. PLoS ONE 8(8):e69056 Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103(16):1252–1263 Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K et al (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304(4):426–434 Dai J, Hu Z, Jiang Y, Shen H, Dong J, Ma H et al (2012) Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women. Breast Cancer Res 14(1):1 Zheng W, Wen W, Gao YT, Shyr Y, Zheng Y, Long J et al (2010) Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. J Natl Cancer Inst 102(13):972–981 Hutter CM, Young AM, Ochs-Balcom HM, Carty CL, Wang T, Chen CT et al (2011) Replication of breast cancer GWAS susceptibility loci in the Women’s Health Initiative African American SHARe Study. Cancer Epidemiol Biomark Prev 20(9):1950–1959 Heramb C, Ekstrom PO, Tharmaratnam K, Hovig E, Moller P, Maehle L (2015) Ten modifiers of BRCA1 penetrance validated in a Norwegian series. Hered Cancer Clin Pract 13(1):14 Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR et al (2010) Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362(11):986–993 Slattery ML, Baumgartner KB, Giuliano AR, Byers T, Herrick JS, Wolff RK (2011) Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat 129(2):531–539 Milne RL, Benítez J, Nevanlinna H, Heikkinen T, Aittomäki K, Blomqvist C et al (2009) Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 101(14):1012–1018 Milne RL, Benítez J, Nevanlinna H, Heikkinen T, Aittomäki K, Blomqvist C et al (2009) Risk of estrogen receptor-positive and–negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 101(14):1012–1018 Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA et al (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4(4):e1000054 Kim H, Lee J-Y, Sung H, Choi J-Y, Park SK, Lee K-M et al (2012) A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study. Breast Cancer Res 14(2):1–12 Fasching PA, Pharoah PDP, Cox A, Nevanlinna H, Bojesen SE, Karn T et al (2012) The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 21(17):3926–3939 Hein A, Rack B, Li L, Ekici AB, Reis A, Lux MP et al (2017) Genetic breast cancer susceptibility variants and prognosis in the prospectively randomized SUCCESS a study. Geburtshilfe Frauenheilkd 77(6):651 Biong M, Gram IT, Brill I, Johansen F, Solvang HK, Alnaes GI et al (2010) Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density. BMC Med Genom 3:9 Woolcott CG, Courneya KS, Boyd NF, Yaffe MJ, McTiernan A, Brant R et al (2013) Longitudinal changes in IGF-I and IGFBP-3, and mammographic density among postmenopausal women. Cancer Epidemiol Biomark Prev 22(11):2116–2120