2D organic semiconductors, the future of green nanotechnology

Nano Materials Science - Tập 1 - Trang 246-259 - 2019
Guru Prakash Neupane1,2, Wendi Ma1, Tanju Yildirim2, Yilin Tang1, Linglong Zhang1, Yuerui Lu1
1Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, the Australian National University, Canberra, ACT 2601, Australia
2College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518052, Guangdong, China

Tài liệu tham khảo

Yang, 2018, 2D organic materials for optoelectronic applications, Adv. Mater., 30, 1702415, 10.1002/adma.201702415 Lee, 2012, Appl. Phys. Lett., 101, 113103, 10.1063/1.4751981 Neupane, 2015, Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: nanoscale optical and electrical characteristics, Electron. Mater. Lett., 11, 741, 10.1007/s13391-015-4496-0 Tang, 1987, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913, 10.1063/1.98799 Tang, 1986, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 48, 183, 10.1063/1.96937 Forrest, 1997, Ultrathin organic films grown by organic molecular beam deposition and related techniques, Chem. Rev., 97, 1793, 10.1021/cr941014o Zhang, 2017, Two-dimensional BDT-based wide band gap polymer donor for efficient non-fullerene organic solar cells, J. Phys. Chem. C, 121, 19634, 10.1021/acs.jpcc.7b05815 Chenais, 2011, Recent advances in solid-state organic lasers, vol. 61, 390 Lee, 2018, Organic transistor-based chemical sensors for wearable bioelectronics, Acc. Chem. Res., 51, 2829, 10.1021/acs.accounts.8b00465 Zhou, 2018, Recent advances of flexible data storage devices based on organic nano scaled materials, Small, 14, 1703126, 10.1002/smll.201703126 Zhu, 2018, High-efficiency monolayer molybdenum ditelluride light-emitting diode and photodetector, ACS Appl. Mater. Interfaces, 10, 43291, 10.1021/acsami.8b14076 Yang, 2015, Optical tuning of exciton and trion emissions in monolayer phosphorene, Light Sci. Appl., 4, e312, 10.1038/lsa.2015.85 Pei, 2019, Many-body complexes in 2D semiconductors, Adv. Mater., 31, 1706945, 10.1002/adma.201706945 Neupane, 2019, In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices, Small, 15, 1804733, 10.1002/smll.201804733 Xu, 2016, Exciton brightening in monolayer phosphorene via dimensionality modification, Adv. Mater., 28, 3493, 10.1002/adma.201505998 Pei, 2017, ACS Nano, 11, 7468, 10.1021/acsnano.7b03909 Ostroverkhova, 2016, Organic optoelectronic materials: mechanisms and applications, Chem. Rev., 116, 13279, 10.1021/acs.chemrev.6b00127 Sakamoto, 2009, Two-dimensional polymers: just a dream of synthetic chemists?, Angew. Chem. Int. Ed., 48, 1030, 10.1002/anie.200801863 Yang, 2018, 2D organic materials for optoelectronic applications, Adv. Mater., 30, 1702415, 10.1002/adma.201702415 Xia, 2014, Two-dimensional material nanophotonics, Nat. Photonics, 8, 899, 10.1038/nphoton.2014.271 Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207 Feldblyum, 2015, Few-layer, large-area, 2D covalent organic framework semiconductor thin films, Chem. Commun., 51, 13894, 10.1039/C5CC04679C Dong, 2012, Organic photoresponse materials and devices, Chem. Soc. Rev., 41, 1754, 10.1039/C1CS15205J Zhang, 2016, Phys. Rev. Lett., 116 He, 2014, Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors, Nat. Commun., 5, 5162, 10.1038/ncomms6162 Zhang, 2018, Efficient and layer-dependent exciton pumping across atomically thin organic–inorganic type-I Heterostructures, Adv. Mater., 30, 1803986, 10.1002/adma.201803986 Deegan, 1997, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389, 827, 10.1038/39827 Hu, 2006, Marangoni effect reverses coffee-ring depositions, J. Phys. Chem. B, 110, 7090, 10.1021/jp0609232 Dimitrov, 1996, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir, 12, 1303, 10.1021/la9502251 Weon, 2013, Fingering inside the coffee ring, Phys. Rev. E, 87, 10.1103/PhysRevE.87.013003 Wang, 2016, 2D Single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly, Adv. Funct. Mater., 26, 3191, 10.1002/adfm.201600304 Iler, 1966, Multilayers of colloidal particles, J. Colloid Interface Sci., 21, 569, 10.1016/0095-8522(66)90018-3 Caruso, 1998, Nano engineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282, 1111, 10.1126/science.282.5391.1111 Donath, 1998, Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem. Int. Ed., 37, 2201, 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E Kozlovskaya, 2008, Tuning swelling pH and permeability of hydrogel multilayer capsules, Soft Matter, 4, 1499, 10.1039/b719952j Kharlampieva, 2016, Hydrogen-bonded polymer multilayers probed by neutron reflectivity, Langmuir, 32, 6020 Kekicheff, 2013, Size-controlled polyelectrolyte complexes: direct measurement of the balance of forces involved in the triggered collapse of layer-by-layer assembled nanocapsules, Langmuir, 29, 10713, 10.1021/la402003b AromÌ, 2003, Synthetic and structural studies of cobalt-pivalate complexes, Chem. Eur J., 9, 915, 10.1002/chem.200304993 Shimazaki, 1998, Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents, Langmuir, 14, 2768, 10.1021/la9713457 Neupane, 2013, Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy, Proc. SPIE, 8879, 88790J, 10.1117/12.2018692 Neupane, 2017, Modulation of optical and electrical characteristics by laterally stretching DNAs on CVD-grown monolayers of MoS2, J. Nanomater., 2017, 10.1155/2017/2565703 Richardson, 2016, Innovation in layer-by-layer assembly, Chem. Rev., 116, 14828, 10.1021/acs.chemrev.6b00627 Deng, 2015, Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH, ACS Macro Lett., 4, 331, 10.1021/acsmacrolett.5b00018 Schlenoff, 2000, Sprayed polyelectrolyte multilayers, Langmuir, 16, 9968, 10.1021/la001312i Zhang, 2018, Efficient and layer-dependent exciton pumping across atomically thin organic–inorganic type-I heterostructures, Adv. Mater., 30, 1803986, 10.1002/adma.201803986 Shioya, 2019, Alternative face-on thin film structure of pentacene, Sci. Rep., 9, 579, 10.1038/s41598-018-37166-6 Asatekin, 2010, Designing polymer surfaces via vapor deposition, Mater. Today, 13, 26, 10.1016/S1369-7021(10)70081-X Neupane, 2017, Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics, ACS Appl. Mater. Interfaces, 9, 11950, 10.1021/acsami.6b15239 Luong, 2017, Tunneling photocurrent assisted by interlayer excitons in staggered van der waals hetero-bilayers, Adv. Mater., 29, 1701512, 10.1002/adma.201701512 Shekar, 2013, Spin coated nano scale PMMA films for organic thin film transistors, Phy. Procedia, 49, 145, 10.1016/j.phpro.2013.10.021 Kotsuki, 2014, The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility, Appl. Phys. Lett., 104, 233306, 10.1063/1.4883216 Liu, 2018, Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers, Mater. Chem. Front., 2, 11, 10.1039/C7QM00279C Yip, 2006, Two-dimensional self-assembly of 1-Pyrylphosphonic acid: transfer of stacks on structured surface, J. Am. Chem. Soc., 128, 5672, 10.1021/ja0563152 Liu, 2017, Self-assembly of electronically abrupt borophene/organic lateral heterostructures, Sci. Adv., 3, 10.1126/sciadv.1602356 Magnussen, 1996, Self-assembly of organic films on a liquid metal, Nature, 384, 250, 10.1038/384250a0 Liu, 2017, Self-assembly of electronically abrupt borophene/organic lateral heterostructures, Sci. Adv., 3, 10.1126/sciadv.1602356 Holt, 1967, Langmuir-Blodgett multi-monolayers as thin film dielectrics, Nature, 214, 1105, 10.1038/2141105a0 Hussain, 2018, Unique supramolecular assembly through Langmuire Blodgett (LB) technique, Heliyon, 4, 10.1016/j.heliyon.2018.e01038 Sorokin, 2005, Pyroelectric study of polarization switching in Langmuir-Blodgett films of poly(vinylidene fluoride trifluoroethylene), J. Appl. Phys., 98, 10.1063/1.2006228 Zhu, 2003, Depletion-mode n-channel organic field-effect transistors based on NTCDA, Solid State Electron., 47, 1855, 10.1016/S0038-1101(03)00141-2 Matsui, 2005, Fabrication of polymer Langmuir-Blodgett Films containing regioregular Poly(3-hexylthiophene) for application to field-effect transistor, Langmuir, 21, 5343, 10.1021/la046922n Park, 2017, Heterogeneous monolithic integration of single-crystal organic materials, Adv. Mater., 29, 1603285, 10.1002/adma.201603285 Lee, 2011, In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors, ACS Nano, 5, 8352, 10.1021/nn203068q Park, 2013, Single-crystal organic nanowire electronics by direct printing from molecular solutions, Adv. Funct. Mater., 23, 4776, 10.1002/adfm.201370238 Goto, 2012, Organic single-crystal arrays from solution-phase growth using micropattern with nucleation control region, Adv. Mater., 24, 1117, 10.1002/adma.201104373 Irimia-Vladu, 2012, Green and biodegradable electronics, Mater. Today, 15, 340, 10.1016/S1369-7021(12)70139-6 Williams, 2006, A review of electronics demanufacturing processes, Resour. Conserv. Recycl., 47, 195, 10.1016/j.resconrec.2005.11.003 Gao, 2018, Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery, J. Mater. Chem., 6, 20546, 10.1039/C8TA07246A Logothetidis, 2008, Flexible organic electronic devices: materials, process and applications, Mater. Sci. Eng. B, 152, 96, 10.1016/j.mseb.2008.06.009 Owens, 2010, Organic electronics at the interface with biology, MRS Bull., 35, 449, 10.1557/mrs2010.583 Inal, 2018, Conjugated polymers in bioelectronics, Acc. Chem. Res., 51, 1368, 10.1021/acs.accounts.7b00624 Cornil, 2000, Nanoscopic templates from oriented block copolymer films, Adv. Mater., 12, 978, 10.1002/1521-4095(200006)12:13<978::AID-ADMA978>3.0.CO;2-S Turbiez, 2005, Design of organic semiconductors: tuning the electronic properties of π-conjugated oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) building block, Chem. Eur J., 11, 3742, 10.1002/chem.200401058 Otieno, 2017, Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT: PSS buffer layer, AIP Adv., 7, 10.1063/1.4995803 Vélez, 2015, Gate-tunable diode and photovoltaic effect in an organic–2D layered material p–n junction, Nanoscale, 7, 15442, 10.1039/C5NR04083C Frisenda, 2017, Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl., 1, 10, 10.1038/s41699-017-0013-7 Shen, 2016, Strain engineering for transition metal dichalcogenides based field effect transistors, ACS Nano, 10, 4712, 10.1021/acsnano.6b01149 Manzeli, 2015, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett., 8, 5330, 10.1021/acs.nanolett.5b01689 Chhowalla, 2016, Two-dimensional semiconductors for transistors, Nat. Rev. Mater., 1, 16052, 10.1038/natrevmats.2016.52 Vissenberg, 1998, Theory of the field-effect mobility in amorphous organic transistors, Phys. Rev. B, 57, 12964, 10.1103/PhysRevB.57.12964 Kronemeijer, 2014, Two-dimensional carrier distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and urbach energy, Adv. Mater., 26, 728, 10.1002/adma.201303060 Giri, 2011, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature, 480, 504, 10.1038/nature10683 Dong, 2013, 25th anniversary article: key points for high-mobility organic field-effect transistors, Adv. Mater., 25, 6158, 10.1002/adma.201302514 Zhang, 2016, Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.016602 He, 2017, Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride, Sci. Adv., 3, 10.1126/sciadv.1701186 Cao, 2010, High-performance Langmuir–blodgett monolayer transistors with high responsivity, Angew. Chem. Int. Ed., 49, 6319, 10.1002/anie.201001683 He, 2014, Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors, Nat. Commun., 5, 5162, 10.1038/ncomms6162 Lee, 2017, Chemical vapor-deposited hexagonal boron nitride as a scalable template for high-performance organic field-effect transistors, Chem. Mater., 29, 2341, 10.1021/acs.chemmater.6b05517 Xu, 2016, A general method for growing two-dimensional crystals of organic semiconductors by "solution epitaxy”, Angew. Chem. Int. Ed., 55, 9519, 10.1002/anie.201602781 Zhao, 2016, High-mobility n-type organic field-effect transistors of Rylene compounds fabricated by a trace-spin-coating technique, Adv. Electron. Mater., 2, 1500430, 10.1002/aelm.201500430 Peng, 2017, Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors, Adv. Funct. Mater., 27, 1700999, 10.1002/adfm.201700999 Schmaltz, 2013, Low-voltage self-assembled monolayer field-effect transistors on flexible substrates, Adv. Mater., 25, 4511, 10.1002/adma.201301176 Shan, 2015, Monolayer field-effect transistors of nonplanar organic semiconductors with brickwork arrangement, Adv. Mater., 27, 3418, 10.1002/adma.201500149 Novak, 2011, Low-voltage p- and n-Type organic self-assembled monolayer field effect transistors, Nano Lett., 11, 156, 10.1021/nl103200r Jiang, 2011, Millimeter-sized molecular monolayer two-dimensional crystals, Adv. Mater., 23, 2059, 10.1002/adma.201004551 Li, 2014, A self-assembled ultrathin crystalline polymer film for high performance phototransistors, Chem. Commun., 50, 11000, 10.1039/C4CC04547E Sun, 2014, Phthalimide–thiophene-based conjugated organic small molecules with high electron mobility, J. Mater. Chem. C, 2, 2612, 10.1039/C3TC32497D Luo, 2016, Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv., 2, 10.1126/sciadv.1600076 Liu, 2016, Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors, Adv. Mater., 28, 5200, 10.1002/adma.201600400 O'Brien, 1999, Improved energy transfer in electro phosphorescent devices, Appl. Phys. Lett., 74, 442, 10.1063/1.123055 Jou, 2015, Approaches for fabricating high efficiency organic light emitting diodes, J. Mater. Chem. C, 3, 2974, 10.1039/C4TC02495H Li, 1997, Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3/AlAl2O3/Al cathode, Appl. Phys. Lett., 70, 1233, 10.1063/1.118539 Zhu, 2014, Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off, J. Appl. Phys., 115, 244512, 10.1063/1.4886179 Adachi, 2014, Third-generation organic electroluminescence materials, Jpn. J. Appl. Phys., 53, 10.7567/JJAP.53.060101 Liu, 2018, High-performance non-doped OLEDs with nearly 100 % exciton use and negligible efficiency roll-off, Angew. Chem. Int. Ed., 57, 9290, 10.1002/anie.201802060 Brütting, 2013, Device efficiency of organic light-emitting diodes: progress by improved light out coupling, Phys. Status Solidi A, 210, 44, 10.1002/pssa.201228320 Jou, 2015, Approaches for fabricating high efficiency organic light emitting diodes, J. Mater. Chem. C, 3, 2974, 10.1039/C4TC02495H Wong, 2017, Purely 0rganic thermally activated delayed fluorescence materials for organic light-emitting diodes, Adv. Mater., 29, 1605444, 10.1002/adma.201605444 Wang, 2019, Design strategies for two-dimensional material photodetectors to enhance device performance, InfoMat, 1, 33, 10.1002/inf2.12004 van Vuuren, 2016, Organic photodiodes: the future of full colour detection and image sensing, Adv. Mater., 28, 4766, 10.1002/adma.201505405 Mendis, 1997, CMOS active pixel image sensors for highly integrated imaging systems, IEEE J. Solid State Circuits, 32, 187, 10.1109/4.551910 Fossum, 1995, CMOS image sensors: electronic camera on a chip, IEDM Teck Dig., 17 Konstantatos, 2010, Nanostructured materials for photon detection, Nat. Nanotechnol., 5, 391, 10.1038/nnano.2010.78 Nau, 2015, Organic non-volatile resistive photo-switches for flexible image detector arrays, Adv. Mater., 27, 1048, 10.1002/adma.201403295 Wu, 2016, Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions, Nano Lett., 166, 3754, 10.1021/acs.nanolett.6b01108 Liu, 2016, Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors, Adv. Mater., 28, 5200, 10.1002/adma.201600400 Thuau, 2014, Highly piezoresistive hybrid MEMS sensors, Sens. Actuators, A, 161, 209 Trung, 2012, Transparent and flexible organic field-effect transistor for multi-modal sensing, Org. Electron., 13, 533, 10.1016/j.orgel.2011.12.015 Hsu, 2011, A locally amplified strain sensor based on a piezoelectric polymer and organic field-effect transistors, IEEE Trans. Electron Devices, 58, 910, 10.1109/TED.2010.2102631 Seena, 2012, “Organic CantiFET”: a nanomechanical polymer cantilever sensor with integrated OFET, J. Microelectromech. Syst., 21, 294, 10.1109/JMEMS.2011.2175703 Hwang, 2014, Organic one-transistor-type nonvolatile memory gated with thin ionic liquid-polymer film for low voltage operation, ACS Appl. Mater. Interfaces, 6, 20179, 10.1021/am505750v Kim, 2014, Non-volatile organic memory with sub-millimetre bending radius, Nat. Commun., 5, 3583, 10.1038/ncomms4583 Fukuda, 2013, Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes, Sci. Rep., 3, 2048, 10.1038/srep02048 Meng, 2018, Organic and solution-processed tandem solar cells with 17.3% efficiency, Science, 361, 1094, 10.1126/science.aat2612 McCaffrey, 1984, Organic-thin-film coated solar cells: energy transfer between surface pyrene molecules and the silicon semiconductor substrate, Sol. Cells, 11, 401, 10.1016/0379-6787(84)90103-0 Kim, 2007, Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 317, 222, 10.1126/science.1141711 Li, 2015, Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%, Energy Environ. Sci., 8, 2902, 10.1039/C5EE02145F Guo, 2012, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene C70 bis adduct with solvent additive, Energy Environ. Sci., 5, 7943, 10.1039/c2ee21481d Ai, 2017, Ternary organic solar cells: compatibility controls for morphology evolution of active layers, J. Mater. Chem. C, 5, 10801, 10.1039/C7TC03565A Vos, 1980, Detailed balance limit of the efficiency of tandem solar cells, J. Phys. D Appl. Phys., 13, 839, 10.1088/0022-3727/13/5/018 Cui, 2017, Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell, J. Am. Chem. Soc., 139, 7302, 10.1021/jacs.7b01493 Li, 2013, Efficient tandem and triple-junction polymer solar cells, J. Am. Chem. Soc., 135, 5529, 10.1021/ja401434x Yamada, 2006, Silicon wire waveguiding system: fundamental characteristics and applications, Electron. Commun. Jpn. Part II Electron., 89, 42, 10.1002/ecjb.20210 Barrelet, 2004, Nanowire photonic circuit elements, Nano Lett., 4, 1981, 10.1021/nl048739k Law, 2004, Nanoribbon waveguides for subwavelength photonics integration, Science, 305, 1269, 10.1126/science.1100999 Yang, 2002, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater., 12, 323, 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G O'Carroll, 2007, Melt-processed polyfluorene nanowires as active waveguides, Small, 3, 1178, 10.1002/smll.200600575 Takazawa, 2005, Optical waveguide self-assembled from organic dye molecules in solution, Nano Lett., 5, 1293, 10.1021/nl050469y Yanagi, 1999, Self-waveguided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition, Appl. Phys. Lett., 75, 187, 10.1063/1.124314 Balzer, 2003, Isolated hexaphenyl nanofibers as optical waveguides, Appl. Phys. Lett., 82, 10, 10.1063/1.1533845 Quochia, 2006, Gain amplification and lasing properties of individual organic nanofibers, Appl. Phys. Lett., 88 Heng, 2010, Optical waveguides based on single-crystalline organic micro-tiles, Adv. Mater., 22, 4716, 10.1002/adma.201000444 Jo, 2014, Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate, J. Mater. Chem. C, 2, 6077, 10.1039/C4TC00409D Sirbuly, 2007, Multifunctional nanowire evanescent wave optical sensors, Adv. Mater., 19, 61, 10.1002/adma.200601995 Lal, 2007, Nano-optics from sensing to waveguiding, Nat. Photonics, 1, 641, 10.1038/nphoton.2007.223