2D organic semiconductors, the future of green nanotechnology
Tài liệu tham khảo
Yang, 2018, 2D organic materials for optoelectronic applications, Adv. Mater., 30, 1702415, 10.1002/adma.201702415
Lee, 2012, Appl. Phys. Lett., 101, 113103, 10.1063/1.4751981
Neupane, 2015, Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: nanoscale optical and electrical characteristics, Electron. Mater. Lett., 11, 741, 10.1007/s13391-015-4496-0
Tang, 1987, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913, 10.1063/1.98799
Tang, 1986, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 48, 183, 10.1063/1.96937
Forrest, 1997, Ultrathin organic films grown by organic molecular beam deposition and related techniques, Chem. Rev., 97, 1793, 10.1021/cr941014o
Zhang, 2017, Two-dimensional BDT-based wide band gap polymer donor for efficient non-fullerene organic solar cells, J. Phys. Chem. C, 121, 19634, 10.1021/acs.jpcc.7b05815
Chenais, 2011, Recent advances in solid-state organic lasers, vol. 61, 390
Lee, 2018, Organic transistor-based chemical sensors for wearable bioelectronics, Acc. Chem. Res., 51, 2829, 10.1021/acs.accounts.8b00465
Zhou, 2018, Recent advances of flexible data storage devices based on organic nano scaled materials, Small, 14, 1703126, 10.1002/smll.201703126
Zhu, 2018, High-efficiency monolayer molybdenum ditelluride light-emitting diode and photodetector, ACS Appl. Mater. Interfaces, 10, 43291, 10.1021/acsami.8b14076
Yang, 2015, Optical tuning of exciton and trion emissions in monolayer phosphorene, Light Sci. Appl., 4, e312, 10.1038/lsa.2015.85
Pei, 2019, Many-body complexes in 2D semiconductors, Adv. Mater., 31, 1706945, 10.1002/adma.201706945
Neupane, 2019, In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices, Small, 15, 1804733, 10.1002/smll.201804733
Xu, 2016, Exciton brightening in monolayer phosphorene via dimensionality modification, Adv. Mater., 28, 3493, 10.1002/adma.201505998
Pei, 2017, ACS Nano, 11, 7468, 10.1021/acsnano.7b03909
Ostroverkhova, 2016, Organic optoelectronic materials: mechanisms and applications, Chem. Rev., 116, 13279, 10.1021/acs.chemrev.6b00127
Sakamoto, 2009, Two-dimensional polymers: just a dream of synthetic chemists?, Angew. Chem. Int. Ed., 48, 1030, 10.1002/anie.200801863
Yang, 2018, 2D organic materials for optoelectronic applications, Adv. Mater., 30, 1702415, 10.1002/adma.201702415
Xia, 2014, Two-dimensional material nanophotonics, Nat. Photonics, 8, 899, 10.1038/nphoton.2014.271
Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207
Feldblyum, 2015, Few-layer, large-area, 2D covalent organic framework semiconductor thin films, Chem. Commun., 51, 13894, 10.1039/C5CC04679C
Dong, 2012, Organic photoresponse materials and devices, Chem. Soc. Rev., 41, 1754, 10.1039/C1CS15205J
Zhang, 2016, Phys. Rev. Lett., 116
He, 2014, Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors, Nat. Commun., 5, 5162, 10.1038/ncomms6162
Zhang, 2018, Efficient and layer-dependent exciton pumping across atomically thin organic–inorganic type-I Heterostructures, Adv. Mater., 30, 1803986, 10.1002/adma.201803986
Deegan, 1997, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389, 827, 10.1038/39827
Hu, 2006, Marangoni effect reverses coffee-ring depositions, J. Phys. Chem. B, 110, 7090, 10.1021/jp0609232
Dimitrov, 1996, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir, 12, 1303, 10.1021/la9502251
Weon, 2013, Fingering inside the coffee ring, Phys. Rev. E, 87, 10.1103/PhysRevE.87.013003
Wang, 2016, 2D Single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly, Adv. Funct. Mater., 26, 3191, 10.1002/adfm.201600304
Iler, 1966, Multilayers of colloidal particles, J. Colloid Interface Sci., 21, 569, 10.1016/0095-8522(66)90018-3
Caruso, 1998, Nano engineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282, 1111, 10.1126/science.282.5391.1111
Donath, 1998, Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem. Int. Ed., 37, 2201, 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
Kozlovskaya, 2008, Tuning swelling pH and permeability of hydrogel multilayer capsules, Soft Matter, 4, 1499, 10.1039/b719952j
Kharlampieva, 2016, Hydrogen-bonded polymer multilayers probed by neutron reflectivity, Langmuir, 32, 6020
Kekicheff, 2013, Size-controlled polyelectrolyte complexes: direct measurement of the balance of forces involved in the triggered collapse of layer-by-layer assembled nanocapsules, Langmuir, 29, 10713, 10.1021/la402003b
AromÌ, 2003, Synthetic and structural studies of cobalt-pivalate complexes, Chem. Eur J., 9, 915, 10.1002/chem.200304993
Shimazaki, 1998, Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents, Langmuir, 14, 2768, 10.1021/la9713457
Neupane, 2013, Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy, Proc. SPIE, 8879, 88790J, 10.1117/12.2018692
Neupane, 2017, Modulation of optical and electrical characteristics by laterally stretching DNAs on CVD-grown monolayers of MoS2, J. Nanomater., 2017, 10.1155/2017/2565703
Richardson, 2016, Innovation in layer-by-layer assembly, Chem. Rev., 116, 14828, 10.1021/acs.chemrev.6b00627
Deng, 2015, Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH, ACS Macro Lett., 4, 331, 10.1021/acsmacrolett.5b00018
Schlenoff, 2000, Sprayed polyelectrolyte multilayers, Langmuir, 16, 9968, 10.1021/la001312i
Zhang, 2018, Efficient and layer-dependent exciton pumping across atomically thin organic–inorganic type-I heterostructures, Adv. Mater., 30, 1803986, 10.1002/adma.201803986
Shioya, 2019, Alternative face-on thin film structure of pentacene, Sci. Rep., 9, 579, 10.1038/s41598-018-37166-6
Asatekin, 2010, Designing polymer surfaces via vapor deposition, Mater. Today, 13, 26, 10.1016/S1369-7021(10)70081-X
Neupane, 2017, Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics, ACS Appl. Mater. Interfaces, 9, 11950, 10.1021/acsami.6b15239
Luong, 2017, Tunneling photocurrent assisted by interlayer excitons in staggered van der waals hetero-bilayers, Adv. Mater., 29, 1701512, 10.1002/adma.201701512
Shekar, 2013, Spin coated nano scale PMMA films for organic thin film transistors, Phy. Procedia, 49, 145, 10.1016/j.phpro.2013.10.021
Kotsuki, 2014, The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility, Appl. Phys. Lett., 104, 233306, 10.1063/1.4883216
Liu, 2018, Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers, Mater. Chem. Front., 2, 11, 10.1039/C7QM00279C
Yip, 2006, Two-dimensional self-assembly of 1-Pyrylphosphonic acid: transfer of stacks on structured surface, J. Am. Chem. Soc., 128, 5672, 10.1021/ja0563152
Liu, 2017, Self-assembly of electronically abrupt borophene/organic lateral heterostructures, Sci. Adv., 3, 10.1126/sciadv.1602356
Magnussen, 1996, Self-assembly of organic films on a liquid metal, Nature, 384, 250, 10.1038/384250a0
Liu, 2017, Self-assembly of electronically abrupt borophene/organic lateral heterostructures, Sci. Adv., 3, 10.1126/sciadv.1602356
Holt, 1967, Langmuir-Blodgett multi-monolayers as thin film dielectrics, Nature, 214, 1105, 10.1038/2141105a0
Hussain, 2018, Unique supramolecular assembly through Langmuire Blodgett (LB) technique, Heliyon, 4, 10.1016/j.heliyon.2018.e01038
Sorokin, 2005, Pyroelectric study of polarization switching in Langmuir-Blodgett films of poly(vinylidene fluoride trifluoroethylene), J. Appl. Phys., 98, 10.1063/1.2006228
Zhu, 2003, Depletion-mode n-channel organic field-effect transistors based on NTCDA, Solid State Electron., 47, 1855, 10.1016/S0038-1101(03)00141-2
Matsui, 2005, Fabrication of polymer Langmuir-Blodgett Films containing regioregular Poly(3-hexylthiophene) for application to field-effect transistor, Langmuir, 21, 5343, 10.1021/la046922n
Park, 2017, Heterogeneous monolithic integration of single-crystal organic materials, Adv. Mater., 29, 1603285, 10.1002/adma.201603285
Lee, 2011, In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors, ACS Nano, 5, 8352, 10.1021/nn203068q
Park, 2013, Single-crystal organic nanowire electronics by direct printing from molecular solutions, Adv. Funct. Mater., 23, 4776, 10.1002/adfm.201370238
Goto, 2012, Organic single-crystal arrays from solution-phase growth using micropattern with nucleation control region, Adv. Mater., 24, 1117, 10.1002/adma.201104373
Irimia-Vladu, 2012, Green and biodegradable electronics, Mater. Today, 15, 340, 10.1016/S1369-7021(12)70139-6
Williams, 2006, A review of electronics demanufacturing processes, Resour. Conserv. Recycl., 47, 195, 10.1016/j.resconrec.2005.11.003
Gao, 2018, Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery, J. Mater. Chem., 6, 20546, 10.1039/C8TA07246A
Logothetidis, 2008, Flexible organic electronic devices: materials, process and applications, Mater. Sci. Eng. B, 152, 96, 10.1016/j.mseb.2008.06.009
Owens, 2010, Organic electronics at the interface with biology, MRS Bull., 35, 449, 10.1557/mrs2010.583
Inal, 2018, Conjugated polymers in bioelectronics, Acc. Chem. Res., 51, 1368, 10.1021/acs.accounts.7b00624
Cornil, 2000, Nanoscopic templates from oriented block copolymer films, Adv. Mater., 12, 978, 10.1002/1521-4095(200006)12:13<978::AID-ADMA978>3.0.CO;2-S
Turbiez, 2005, Design of organic semiconductors: tuning the electronic properties of π-conjugated oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) building block, Chem. Eur J., 11, 3742, 10.1002/chem.200401058
Otieno, 2017, Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT: PSS buffer layer, AIP Adv., 7, 10.1063/1.4995803
Vélez, 2015, Gate-tunable diode and photovoltaic effect in an organic–2D layered material p–n junction, Nanoscale, 7, 15442, 10.1039/C5NR04083C
Frisenda, 2017, Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl., 1, 10, 10.1038/s41699-017-0013-7
Shen, 2016, Strain engineering for transition metal dichalcogenides based field effect transistors, ACS Nano, 10, 4712, 10.1021/acsnano.6b01149
Manzeli, 2015, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett., 8, 5330, 10.1021/acs.nanolett.5b01689
Chhowalla, 2016, Two-dimensional semiconductors for transistors, Nat. Rev. Mater., 1, 16052, 10.1038/natrevmats.2016.52
Vissenberg, 1998, Theory of the field-effect mobility in amorphous organic transistors, Phys. Rev. B, 57, 12964, 10.1103/PhysRevB.57.12964
Kronemeijer, 2014, Two-dimensional carrier distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and urbach energy, Adv. Mater., 26, 728, 10.1002/adma.201303060
Giri, 2011, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature, 480, 504, 10.1038/nature10683
Dong, 2013, 25th anniversary article: key points for high-mobility organic field-effect transistors, Adv. Mater., 25, 6158, 10.1002/adma.201302514
Zhang, 2016, Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.016602
He, 2017, Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride, Sci. Adv., 3, 10.1126/sciadv.1701186
Cao, 2010, High-performance Langmuir–blodgett monolayer transistors with high responsivity, Angew. Chem. Int. Ed., 49, 6319, 10.1002/anie.201001683
He, 2014, Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors, Nat. Commun., 5, 5162, 10.1038/ncomms6162
Lee, 2017, Chemical vapor-deposited hexagonal boron nitride as a scalable template for high-performance organic field-effect transistors, Chem. Mater., 29, 2341, 10.1021/acs.chemmater.6b05517
Xu, 2016, A general method for growing two-dimensional crystals of organic semiconductors by "solution epitaxy”, Angew. Chem. Int. Ed., 55, 9519, 10.1002/anie.201602781
Zhao, 2016, High-mobility n-type organic field-effect transistors of Rylene compounds fabricated by a trace-spin-coating technique, Adv. Electron. Mater., 2, 1500430, 10.1002/aelm.201500430
Peng, 2017, Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors, Adv. Funct. Mater., 27, 1700999, 10.1002/adfm.201700999
Schmaltz, 2013, Low-voltage self-assembled monolayer field-effect transistors on flexible substrates, Adv. Mater., 25, 4511, 10.1002/adma.201301176
Shan, 2015, Monolayer field-effect transistors of nonplanar organic semiconductors with brickwork arrangement, Adv. Mater., 27, 3418, 10.1002/adma.201500149
Novak, 2011, Low-voltage p- and n-Type organic self-assembled monolayer field effect transistors, Nano Lett., 11, 156, 10.1021/nl103200r
Jiang, 2011, Millimeter-sized molecular monolayer two-dimensional crystals, Adv. Mater., 23, 2059, 10.1002/adma.201004551
Li, 2014, A self-assembled ultrathin crystalline polymer film for high performance phototransistors, Chem. Commun., 50, 11000, 10.1039/C4CC04547E
Sun, 2014, Phthalimide–thiophene-based conjugated organic small molecules with high electron mobility, J. Mater. Chem. C, 2, 2612, 10.1039/C3TC32497D
Luo, 2016, Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv., 2, 10.1126/sciadv.1600076
Liu, 2016, Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors, Adv. Mater., 28, 5200, 10.1002/adma.201600400
O'Brien, 1999, Improved energy transfer in electro phosphorescent devices, Appl. Phys. Lett., 74, 442, 10.1063/1.123055
Jou, 2015, Approaches for fabricating high efficiency organic light emitting diodes, J. Mater. Chem. C, 3, 2974, 10.1039/C4TC02495H
Li, 1997, Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3/AlAl2O3/Al cathode, Appl. Phys. Lett., 70, 1233, 10.1063/1.118539
Zhu, 2014, Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off, J. Appl. Phys., 115, 244512, 10.1063/1.4886179
Adachi, 2014, Third-generation organic electroluminescence materials, Jpn. J. Appl. Phys., 53, 10.7567/JJAP.53.060101
Liu, 2018, High-performance non-doped OLEDs with nearly 100 % exciton use and negligible efficiency roll-off, Angew. Chem. Int. Ed., 57, 9290, 10.1002/anie.201802060
Brütting, 2013, Device efficiency of organic light-emitting diodes: progress by improved light out coupling, Phys. Status Solidi A, 210, 44, 10.1002/pssa.201228320
Jou, 2015, Approaches for fabricating high efficiency organic light emitting diodes, J. Mater. Chem. C, 3, 2974, 10.1039/C4TC02495H
Wong, 2017, Purely 0rganic thermally activated delayed fluorescence materials for organic light-emitting diodes, Adv. Mater., 29, 1605444, 10.1002/adma.201605444
Wang, 2019, Design strategies for two-dimensional material photodetectors to enhance device performance, InfoMat, 1, 33, 10.1002/inf2.12004
van Vuuren, 2016, Organic photodiodes: the future of full colour detection and image sensing, Adv. Mater., 28, 4766, 10.1002/adma.201505405
Mendis, 1997, CMOS active pixel image sensors for highly integrated imaging systems, IEEE J. Solid State Circuits, 32, 187, 10.1109/4.551910
Fossum, 1995, CMOS image sensors: electronic camera on a chip, IEDM Teck Dig., 17
Konstantatos, 2010, Nanostructured materials for photon detection, Nat. Nanotechnol., 5, 391, 10.1038/nnano.2010.78
Nau, 2015, Organic non-volatile resistive photo-switches for flexible image detector arrays, Adv. Mater., 27, 1048, 10.1002/adma.201403295
Wu, 2016, Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions, Nano Lett., 166, 3754, 10.1021/acs.nanolett.6b01108
Liu, 2016, Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors, Adv. Mater., 28, 5200, 10.1002/adma.201600400
Thuau, 2014, Highly piezoresistive hybrid MEMS sensors, Sens. Actuators, A, 161, 209
Trung, 2012, Transparent and flexible organic field-effect transistor for multi-modal sensing, Org. Electron., 13, 533, 10.1016/j.orgel.2011.12.015
Hsu, 2011, A locally amplified strain sensor based on a piezoelectric polymer and organic field-effect transistors, IEEE Trans. Electron Devices, 58, 910, 10.1109/TED.2010.2102631
Seena, 2012, “Organic CantiFET”: a nanomechanical polymer cantilever sensor with integrated OFET, J. Microelectromech. Syst., 21, 294, 10.1109/JMEMS.2011.2175703
Hwang, 2014, Organic one-transistor-type nonvolatile memory gated with thin ionic liquid-polymer film for low voltage operation, ACS Appl. Mater. Interfaces, 6, 20179, 10.1021/am505750v
Kim, 2014, Non-volatile organic memory with sub-millimetre bending radius, Nat. Commun., 5, 3583, 10.1038/ncomms4583
Fukuda, 2013, Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes, Sci. Rep., 3, 2048, 10.1038/srep02048
Meng, 2018, Organic and solution-processed tandem solar cells with 17.3% efficiency, Science, 361, 1094, 10.1126/science.aat2612
McCaffrey, 1984, Organic-thin-film coated solar cells: energy transfer between surface pyrene molecules and the silicon semiconductor substrate, Sol. Cells, 11, 401, 10.1016/0379-6787(84)90103-0
Kim, 2007, Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 317, 222, 10.1126/science.1141711
Li, 2015, Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%, Energy Environ. Sci., 8, 2902, 10.1039/C5EE02145F
Guo, 2012, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene C70 bis adduct with solvent additive, Energy Environ. Sci., 5, 7943, 10.1039/c2ee21481d
Ai, 2017, Ternary organic solar cells: compatibility controls for morphology evolution of active layers, J. Mater. Chem. C, 5, 10801, 10.1039/C7TC03565A
Vos, 1980, Detailed balance limit of the efficiency of tandem solar cells, J. Phys. D Appl. Phys., 13, 839, 10.1088/0022-3727/13/5/018
Cui, 2017, Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell, J. Am. Chem. Soc., 139, 7302, 10.1021/jacs.7b01493
Li, 2013, Efficient tandem and triple-junction polymer solar cells, J. Am. Chem. Soc., 135, 5529, 10.1021/ja401434x
Yamada, 2006, Silicon wire waveguiding system: fundamental characteristics and applications, Electron. Commun. Jpn. Part II Electron., 89, 42, 10.1002/ecjb.20210
Barrelet, 2004, Nanowire photonic circuit elements, Nano Lett., 4, 1981, 10.1021/nl048739k
Law, 2004, Nanoribbon waveguides for subwavelength photonics integration, Science, 305, 1269, 10.1126/science.1100999
Yang, 2002, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater., 12, 323, 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
O'Carroll, 2007, Melt-processed polyfluorene nanowires as active waveguides, Small, 3, 1178, 10.1002/smll.200600575
Takazawa, 2005, Optical waveguide self-assembled from organic dye molecules in solution, Nano Lett., 5, 1293, 10.1021/nl050469y
Yanagi, 1999, Self-waveguided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition, Appl. Phys. Lett., 75, 187, 10.1063/1.124314
Balzer, 2003, Isolated hexaphenyl nanofibers as optical waveguides, Appl. Phys. Lett., 82, 10, 10.1063/1.1533845
Quochia, 2006, Gain amplification and lasing properties of individual organic nanofibers, Appl. Phys. Lett., 88
Heng, 2010, Optical waveguides based on single-crystalline organic micro-tiles, Adv. Mater., 22, 4716, 10.1002/adma.201000444
Jo, 2014, Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate, J. Mater. Chem. C, 2, 6077, 10.1039/C4TC00409D
Sirbuly, 2007, Multifunctional nanowire evanescent wave optical sensors, Adv. Mater., 19, 61, 10.1002/adma.200601995
Lal, 2007, Nano-optics from sensing to waveguiding, Nat. Photonics, 1, 641, 10.1038/nphoton.2007.223