2D-defocusing nonlinear Schrödinger equation with random data on irrational tori

Chenjie Fan1, Yumeng Ou2, Gigliola Staffilani3, Hong Wang4
1Department of Mathematics, University of Chicago, Chicago, USA
2Department of Mathematics, Baruch College, City University of New York, New York, USA
3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA
4Institute for Advanced Study, Princeton, USA

Tóm tắt

We revisit the work of Bourgain on the invariance of the Gibbs measure for the cubic, defocusing nonlinear Schrödinger equation in 2D on a square torus, and we prove the equivalent result on any tori.

Từ khóa


Tài liệu tham khảo

Bombieri, E., Pila, J., et al.: The number of integral points on arcs and ovals. Duke Math. J 59(2), 337–357 (1989) Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part i, nonlinear Schrödinger Equations. Geom. Funct. Anal. 3(2), 107–156 (1993) Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994) Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2), 421–445 (1996) Bourgain, J., Demeter, C.: The proof of the \(L^{2}\) decoupling conjecture. Ann. Math. 182, 351–389 (2015) Caffarelli, L., Weinan, E.: Hyperbolic equations and frequency interactions, vol. 5. In: Hyperbolic Equations and Frequency Interactions (1999) Deng, Y., Germain, P., Guth, L.: Strichartz estimates for the Schrödinger equation on irrational tori. J. Funct. Anal. 273(9), 2846–2869 (2017) Deng, Yu, Nahmod, Andrea, Yue, Haitian: Invariant Gibbs measure and global strong solutions for nonlinear Schrödinger equations in dimension two. arXiv:1910.08492 (2019) Glimm, J., Jaffe, A.: Quantum Physics. Springer, New York (1989) Lebowitz, J., Rose, H., Speer, E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988) Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity 23(11), 2771 (2010) Tzvetkov, N.: Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation. Probab. Theory Relat. Fields 146(3–4), 481 (2010) Tzvetkov, N., Sun, C.: Concerning the pathological set in the context of probabilistic well-posedness. arXiv:2001.10293 (2020)