2D auxetic metamaterials with tuneable micro-/nanoscale apertures
Tài liệu tham khảo
van Assenbergh, 2018, Nanostructure and microstructure fabrication : from desired properties to suitable processes, Small, 14, 10.1002/smll.201801989
Hohmann, 2015, Three-dimensional u-printing: an enabling technology, Adv. Opt. Mater., 3, 1488, 10.1002/adom.201500328
Iturri, 2015, Torrent frog-inspired adhesives : attachment to flooded surfaces, Adv. Funct. Mater., 25, 1499, 10.1002/adfm.201403751
Fozdar, 2011, Three-dimensional polymer constructs exhibiting a tunable negative poisson's ratio, Adv. Funct. Mater., 21, 2712, 10.1002/adfm.201002022
Bückmann, 2012, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography, Adv. Mater., 2710, 10.1002/adma.201200584
Tricinci, 2015, 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography, ACS Appl. Mater. Interfaces, 7, 25560, 10.1021/acsami.5b07722
Park, 2007, High-resolution electrohydrodynamic jet printing, Nat. Mater., 6, 782, 10.1038/nmat1974
Uchida, 2017, Ultra-small near-infrared multi-wavelength light source using a heterojunction photonic crystal waveguide and self-assembled InAs quantum dots, Jpn. J. Appl. Phys., 56, 10.7567/JJAP.56.050303
Gardner, 2011, Molecular crystals and liquid crystals towards reconfigurable optical metamaterials : colloidal nanoparticle self-assembly and self-alignment in liquid crystals, Mol. Cryst. Liq. Cryst., 545, 1227, 10.1080/15421406.2011.571966
Ansari, 2014, Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing, Appl. Phys. Lett., 476, 17
Jeong, 2014, High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching, Nat. Commun., 5, 5387, 10.1038/ncomms6387
Zheludev, 2016, Reconfigurable nanomechanical photonic metamaterials, Nat. Nanotechnol., 11, 16, 10.1038/nnano.2015.302
Stewart, 2008, Nanostructured plasmonic sensors, Chem. Rev., 108, 494, 10.1021/cr068126n
Choi, 2010, Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures, Nanotechnology, 21, 10.1088/0957-4484/21/40/405503
Tripathy, 2017, Natural and bioinspired nanostructured bactericidal surfaces, Adv. Colloid Interface Sci., 248, 85, 10.1016/j.cis.2017.07.030
Krogmeier, 2001, Focused ion beam modification of atomic force microscopy tips for near-field scanning optical microscopy, Appl. Phys. Lett., 79, 4494, 10.1063/1.1430028
Kim, 2012, Review: developments in micro/nanoscale fabrication by focused ion beams, Vaccum, 86, 1014, 10.1016/j.vacuum.2011.11.004
Machalett, 2019, Focused ion beams and some selected applications, Encycl. Appl. Phys., 1
Salvati, 2016, The effect of eigenstrain induced by ion beam damage on the apparent strain relief in FIB-DIC residual stress evaluation, Mater. Des., 92, 649, 10.1016/j.matdes.2015.12.015
Brostow, 2007, Focused ion beam milling and scanning electron microscopy characterization of polymer + metal hybrids, Mater. Lett., 61, 1333, 10.1016/j.matlet.2006.07.026
Moll, 2018, Focused ion beam microstructuring of quantum matter, Annu. Rev. Condens. Matter Phys., 13, 147, 10.1146/annurev-conmatphys-033117-054021
Yao, 2014, Plasmonic metamaterials, Nanotechnol. Rev., 3, 177, 10.1515/ntrev-2012-0071
Biener, 2008, Nanoporous plasmonic metamaterials, Adv. Mater., 20, 1211, 10.1002/adma.200701899
Kollmann, 2014, Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas, Nano Lett., 4778, 10.1021/nl5019589
Enkrich, 2005, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials, Adv. Mater., 17, 2547, 10.1002/adma.200500804
Casse, 2006, Fabrication of 2D and 3D electromagnetic metamaterials for the terahertz range, J. Phys. Conf. Ser., 34, 885, 10.1088/1742-6596/34/1/147
Huang, 2011, Optical properties of a planar metamaterial with chiral symmetry breaking, Opt. Lett., 36, 3359, 10.1364/OL.36.003359
Esposito, 2014, Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam, Adv. Opt. Mater., 2, 154, 10.1002/adom.201300323
Chen, 2018, Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking, Nano Lett., 18, 520, 10.1021/acs.nanolett.7b04515
Hentschel, 2017, Chiral plasmonics, Sci. Adv., 3, 10.1126/sciadv.1602735
Liu, 2018, Nano-kirigami with giant optical chirality, Sci. Adv., 4, 1, 10.1126/sciadv.aat4436
Pitchappa, 2016, Reconfi gurable digital metamaterial for dynamic switching of terahertz anisotropy, Adv. Opt. Mater., 4, 391, 10.1002/adom.201500588
Valente, 2016, Nano- and micro-auxetic plasmonic materials, Adv. Mater., 5176, 10.1002/adma.201600088
Gholipour, 2019, Reconfigurable ultraviolet and high-energy visible dielectric metamaterials, Nano Lett., 19, 1643, 10.1021/acs.nanolett.8b04576
Evans, 1991, Molecular network design, Nature, 353, 124, 10.1038/353124a0
Lakes, 1987, Foam structures with a negative Poisson's ratio, Science (80-), 235, 1038, 10.1126/science.235.4792.1038
Wojciechowski, 1989, Negative Poisson ratio in a two-dimensional ``isotropic'' solid, Phys. Rev. A, 40, 7222, 10.1103/PhysRevA.40.7222
Prall, 1997, Properties of a chiral honeycomb with a Poisson's ratio of –1, Int. J. Mech. Sci., 39, 305, 10.1016/S0020-7403(96)00025-2
Alderson, 2010, Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70, 1042, 10.1016/j.compscitech.2009.07.009
Grima, 2000, Auxetic behavior from rotating squares, J. Mater. Sci. Lett., 19, 1563, 10.1023/A:1006781224002
Grima, 2006, Auxetic behavior from rotating triangles, J. Mater. Sci., 1, 3193, 10.1007/s10853-006-6339-8
Masters, 1996, Models for the elastic deformation of honeycombs, Compos. Struct., 35, 403, 10.1016/S0263-8223(96)00054-2
Gibson, 1982, The mechanics of two dimensional cellular materials, Proc. R. Soc. A, 382, 25
Rothenburg, 1991, Microstructure of isotropic materials with a negative Poisson's ratio, Nature, 354, 470, 10.1038/354470a0
Salvati, 2018, Nanoscale structural damage due to focused ion beam milling of silicon with Ga ions, Mater. Lett., 213, 346, 10.1016/j.matlet.2017.11.043
Mizzi, 2015, Auxetic metamaterials exhibiting giant negative Poisson's ratios, Phys. Status Solidi Rapid Res. Lett., 9, 425, 10.1002/pssr.201510178
Shan, 2015, Design of planar isotropic negative Poisson's ratio structures, Extrem Mech. Lett., 4, 96, 10.1016/j.eml.2015.05.002
Cho, 2014, Engineering the shape and structure of materials by fractal cut, Proc. Natl. Acad. Sci., 111, 17390, 10.1073/pnas.1417276111
Grima, 2010, Perforated sheets exhibiting negative Poisson's ratios, Adv. Eng. Mater., 12, 460, 10.1002/adem.201000005
Mizzi, 2020, Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting, Int. J. Mech. Sci., 167, 10.1016/j.ijmecsci.2019.105242
Attard, 2018, Filtration properties of auxetics with rotating rigid units, Materials (Basel), 11, 1, 10.3390/ma11050725
Wang, 2015, Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam, Appl. Phys. Lett., 106
Guenole, 2017, Atomistic simulations of focused ion beam machining of strained silicon, Appl. Surf. Sci., 416, 86, 10.1016/j.apsusc.2017.04.027
Grima, 2016, Auxetic perforated mechanical metamaterials with randomly oriented cuts, Adv. Mater., 28, 385, 10.1002/adma.201503653
Karvounis, 2019, Mechanochromic reconfigurable metasurfaces, Adv. Sci., 6, 10.1002/advs.201900974
Ou, 2013, An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol., 1
Dudek, 2020, 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour, Mater. Des., 187, 10.1016/j.matdes.2019.108403
Slesarenko, 2020, Planar mechanical metamaterials with embedded permanent magnets, Materials (Basel), 13, 1, 10.3390/ma13061313
Shin, 2012, Broadband electromagnetic cloaking with smart metamaterials, Nat. Commun., 3, 1213, 10.1038/ncomms2219