2D auxetic metamaterials with tuneable micro-/nanoscale apertures

Applied Materials Today - Tập 20 - Trang 100780 - 2020
Luke Mizzi1, Enrico Salvati2,3, Andrea Spaggiari1, Jin-Chong Tan4, Alexander M. Korsunsky2
1Department of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Reggio Emilia, Italy
2MBLEM, Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, United Kingdom
3Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via delle Scienze 208, Udine, 33100, Italy
4Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, United Kingdom

Tài liệu tham khảo

van Assenbergh, 2018, Nanostructure and microstructure fabrication : from desired properties to suitable processes, Small, 14, 10.1002/smll.201801989 Hohmann, 2015, Three-dimensional u-printing: an enabling technology, Adv. Opt. Mater., 3, 1488, 10.1002/adom.201500328 Iturri, 2015, Torrent frog-inspired adhesives : attachment to flooded surfaces, Adv. Funct. Mater., 25, 1499, 10.1002/adfm.201403751 Fozdar, 2011, Three-dimensional polymer constructs exhibiting a tunable negative poisson's ratio, Adv. Funct. Mater., 21, 2712, 10.1002/adfm.201002022 Bückmann, 2012, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography, Adv. Mater., 2710, 10.1002/adma.201200584 Tricinci, 2015, 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography, ACS Appl. Mater. Interfaces, 7, 25560, 10.1021/acsami.5b07722 Park, 2007, High-resolution electrohydrodynamic jet printing, Nat. Mater., 6, 782, 10.1038/nmat1974 Uchida, 2017, Ultra-small near-infrared multi-wavelength light source using a heterojunction photonic crystal waveguide and self-assembled InAs quantum dots, Jpn. J. Appl. Phys., 56, 10.7567/JJAP.56.050303 Gardner, 2011, Molecular crystals and liquid crystals towards reconfigurable optical metamaterials : colloidal nanoparticle self-assembly and self-alignment in liquid crystals, Mol. Cryst. Liq. Cryst., 545, 1227, 10.1080/15421406.2011.571966 Ansari, 2014, Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing, Appl. Phys. Lett., 476, 17 Jeong, 2014, High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching, Nat. Commun., 5, 5387, 10.1038/ncomms6387 Zheludev, 2016, Reconfigurable nanomechanical photonic metamaterials, Nat. Nanotechnol., 11, 16, 10.1038/nnano.2015.302 Stewart, 2008, Nanostructured plasmonic sensors, Chem. Rev., 108, 494, 10.1021/cr068126n Choi, 2010, Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures, Nanotechnology, 21, 10.1088/0957-4484/21/40/405503 Tripathy, 2017, Natural and bioinspired nanostructured bactericidal surfaces, Adv. Colloid Interface Sci., 248, 85, 10.1016/j.cis.2017.07.030 Krogmeier, 2001, Focused ion beam modification of atomic force microscopy tips for near-field scanning optical microscopy, Appl. Phys. Lett., 79, 4494, 10.1063/1.1430028 Kim, 2012, Review: developments in micro/nanoscale fabrication by focused ion beams, Vaccum, 86, 1014, 10.1016/j.vacuum.2011.11.004 Machalett, 2019, Focused ion beams and some selected applications, Encycl. Appl. Phys., 1 Salvati, 2016, The effect of eigenstrain induced by ion beam damage on the apparent strain relief in FIB-DIC residual stress evaluation, Mater. Des., 92, 649, 10.1016/j.matdes.2015.12.015 Brostow, 2007, Focused ion beam milling and scanning electron microscopy characterization of polymer + metal hybrids, Mater. Lett., 61, 1333, 10.1016/j.matlet.2006.07.026 Moll, 2018, Focused ion beam microstructuring of quantum matter, Annu. Rev. Condens. Matter Phys., 13, 147, 10.1146/annurev-conmatphys-033117-054021 Yao, 2014, Plasmonic metamaterials, Nanotechnol. Rev., 3, 177, 10.1515/ntrev-2012-0071 Biener, 2008, Nanoporous plasmonic metamaterials, Adv. Mater., 20, 1211, 10.1002/adma.200701899 Kollmann, 2014, Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas, Nano Lett., 4778, 10.1021/nl5019589 Enkrich, 2005, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials, Adv. Mater., 17, 2547, 10.1002/adma.200500804 Casse, 2006, Fabrication of 2D and 3D electromagnetic metamaterials for the terahertz range, J. Phys. Conf. Ser., 34, 885, 10.1088/1742-6596/34/1/147 Huang, 2011, Optical properties of a planar metamaterial with chiral symmetry breaking, Opt. Lett., 36, 3359, 10.1364/OL.36.003359 Esposito, 2014, Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam, Adv. Opt. Mater., 2, 154, 10.1002/adom.201300323 Chen, 2018, Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking, Nano Lett., 18, 520, 10.1021/acs.nanolett.7b04515 Hentschel, 2017, Chiral plasmonics, Sci. Adv., 3, 10.1126/sciadv.1602735 Liu, 2018, Nano-kirigami with giant optical chirality, Sci. Adv., 4, 1, 10.1126/sciadv.aat4436 Pitchappa, 2016, Reconfi gurable digital metamaterial for dynamic switching of terahertz anisotropy, Adv. Opt. Mater., 4, 391, 10.1002/adom.201500588 Valente, 2016, Nano- and micro-auxetic plasmonic materials, Adv. Mater., 5176, 10.1002/adma.201600088 Gholipour, 2019, Reconfigurable ultraviolet and high-energy visible dielectric metamaterials, Nano Lett., 19, 1643, 10.1021/acs.nanolett.8b04576 Evans, 1991, Molecular network design, Nature, 353, 124, 10.1038/353124a0 Lakes, 1987, Foam structures with a negative Poisson's ratio, Science (80-), 235, 1038, 10.1126/science.235.4792.1038 Wojciechowski, 1989, Negative Poisson ratio in a two-dimensional ``isotropic'' solid, Phys. Rev. A, 40, 7222, 10.1103/PhysRevA.40.7222 Prall, 1997, Properties of a chiral honeycomb with a Poisson's ratio of –1, Int. J. Mech. Sci., 39, 305, 10.1016/S0020-7403(96)00025-2 Alderson, 2010, Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70, 1042, 10.1016/j.compscitech.2009.07.009 Grima, 2000, Auxetic behavior from rotating squares, J. Mater. Sci. Lett., 19, 1563, 10.1023/A:1006781224002 Grima, 2006, Auxetic behavior from rotating triangles, J. Mater. Sci., 1, 3193, 10.1007/s10853-006-6339-8 Masters, 1996, Models for the elastic deformation of honeycombs, Compos. Struct., 35, 403, 10.1016/S0263-8223(96)00054-2 Gibson, 1982, The mechanics of two dimensional cellular materials, Proc. R. Soc. A, 382, 25 Rothenburg, 1991, Microstructure of isotropic materials with a negative Poisson's ratio, Nature, 354, 470, 10.1038/354470a0 Salvati, 2018, Nanoscale structural damage due to focused ion beam milling of silicon with Ga ions, Mater. Lett., 213, 346, 10.1016/j.matlet.2017.11.043 Mizzi, 2015, Auxetic metamaterials exhibiting giant negative Poisson's ratios, Phys. Status Solidi Rapid Res. Lett., 9, 425, 10.1002/pssr.201510178 Shan, 2015, Design of planar isotropic negative Poisson's ratio structures, Extrem Mech. Lett., 4, 96, 10.1016/j.eml.2015.05.002 Cho, 2014, Engineering the shape and structure of materials by fractal cut, Proc. Natl. Acad. Sci., 111, 17390, 10.1073/pnas.1417276111 Grima, 2010, Perforated sheets exhibiting negative Poisson's ratios, Adv. Eng. Mater., 12, 460, 10.1002/adem.201000005 Mizzi, 2020, Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting, Int. J. Mech. Sci., 167, 10.1016/j.ijmecsci.2019.105242 Attard, 2018, Filtration properties of auxetics with rotating rigid units, Materials (Basel), 11, 1, 10.3390/ma11050725 Wang, 2015, Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam, Appl. Phys. Lett., 106 Guenole, 2017, Atomistic simulations of focused ion beam machining of strained silicon, Appl. Surf. Sci., 416, 86, 10.1016/j.apsusc.2017.04.027 Grima, 2016, Auxetic perforated mechanical metamaterials with randomly oriented cuts, Adv. Mater., 28, 385, 10.1002/adma.201503653 Karvounis, 2019, Mechanochromic reconfigurable metasurfaces, Adv. Sci., 6, 10.1002/advs.201900974 Ou, 2013, An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol., 1 Dudek, 2020, 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour, Mater. Des., 187, 10.1016/j.matdes.2019.108403 Slesarenko, 2020, Planar mechanical metamaterials with embedded permanent magnets, Materials (Basel), 13, 1, 10.3390/ma13061313 Shin, 2012, Broadband electromagnetic cloaking with smart metamaterials, Nat. Commun., 3, 1213, 10.1038/ncomms2219