2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
Tóm tắt
Từ khóa
Tài liệu tham khảo
Griffith, 1921, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 221, 163, 10.1098/rsta.1921.0006
Molnár, 2016, Densification dependent yield criteria for sodium silicate glasses – an atomistic simulation approach, Acta Mater., 111, 129, 10.1016/j.actamat.2016.03.053
Kermouche, 2016, Perfectly plastic flow in silica glass, Acta Mater., 114, 146, 10.1016/j.actamat.2016.05.027
Peng, 2012, A node split method for crack growth problem, Appl. Mech. Mater., 182–183, 1524, 10.4028/www.scientific.net/AMM.182-183.1524
Zhou, 2004, Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency, Int. J. Numer. Methods Eng., 59, 1, 10.1002/nme.857
Azevedo, 2006, Hybrid discrete element/finite element method for fracture analysis, Comput. Methods Appl. Mech. Eng., 195, 4579, 10.1016/j.cma.2005.10.005
Moës, 1999, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Moës, 2002, Non-planar 3D crack growth by the extended finite element and level sets – Part I: mechanical model, Int. J. Numer. Methods Eng., 53, 2549, 10.1002/nme.429
Gürses, 2009, A computational framework of three-dimensional configurational-force-driven brittle crack propagation, Comput. Methods Appl. Mech. Eng., 198, 1413, 10.1016/j.cma.2008.12.028
Bourdin, 2008
Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations, Int. J. Numer. Methods Eng., 83, 1273, 10.1002/nme.2861
Mumford, 1989, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577, 10.1002/cpa.3160420503
Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9
Buliga, 1998, Energy minimizing brittle crack propagation, J. Elast., 52, 201, 10.1023/A:1007545213010
Bourdin, 2000, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797, 10.1016/S0022-5096(99)00028-9
Dal Maso, 2002, A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal., 162, 101, 10.1007/s002050100187
Msekh, 2015, Abaqus implementation of phase-field model for brittle fracture, Comput. Mater. Sci., 96, 472, 10.1016/j.commatsci.2014.05.071
ABAQUS, ABAQUS Documentation, Dassault Systemes, Providence, RI, USA, 2011.
Miehe, 2010, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 2765, 10.1016/j.cma.2010.04.011
Hofacker, 2013, A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns, Int. J. Numer. Methods Eng., 93, 276, 10.1002/nme.4387
Miehe, 2014, Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65, 93, 10.1016/j.jmps.2013.06.007
Singh, 2016, A fracture-controlled path-following technique for phase-field modeling of brittle fracture, Finite Elem. Anal. Des., 113, 14, 10.1016/j.finel.2015.12.005
Miehe, 2015, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Eng., 294, 449, 10.1016/j.cma.2014.11.016
Miehe, 2015, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Eng., 294, 486, 10.1016/j.cma.2014.11.017
Miehe, 1998, Comparison of two algorithms for the computation of fourth-order isotropic tensor functions, Comput. Struct., 66, 37, 10.1016/S0045-7949(97)00073-4
Moës, 2011, A level set based model for damage growth: the thick level set approach, Int. J. Numer. Methods Eng., 86, 358, 10.1002/nme.3069
Rountree, 2007, A unified study of crack propagation in amorphous silica: using experiments and simulations, J. Alloy. Compd., 434–435, 60, 10.1016/j.jallcom.2006.08.336
Choe, 2001, Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at%) intermetallic, Intermetallics, 9, 319, 10.1016/S0966-9795(01)00008-5
Sumi, 1998, A finite-element simulation method for a system of growing cracks in a heterogeneous material, Mech. Mater., 28, 197, 10.1016/S0167-6636(97)00048-3
Bittencourt, 1996, Quasi-automatic simulation of crack propagation for 2D LEFM problems, Eng. Fract. Mech., 55, 321, 10.1016/0013-7944(95)00247-2
Cazes, 2015, Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture, Int. J. Numer. Methods Eng., 103, 114, 10.1002/nme.4886
Molnár, 2016, Sodium effect on static mechanical behavior of md-modeled sodium silicate glasses, J. Non-Cryst. Solids, 440, 12, 10.1016/j.jnoncrysol.2016.02.024
Mueller, 2015, Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams, Acta Mater., 86, 385, 10.1016/j.actamat.2014.12.016
Miehe, 2016, Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1, 10.1016/j.ijplas.2016.04.011
Molnár, 2016, Fragmentation of wedge loaded tempered structural glass, Glass Struct. Eng., 59, 1
Zienkiewicz, 2014