Sang, 2015, Adv. Mater., 27, 363, 10.1002/adma.201403264
Di Paola, 1999, J. Phys. Chem. B, 103, 8236, 10.1021/jp9911797
Guardia, 2014, RSC Adv., 4, 14115, 10.1039/C4RA00212A
Low, 2014, Chem. Commun., 50, 10768, 10.1039/C4CC02553A
Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945
Ho, 2004, Langmuir, 20, 5865, 10.1021/la049838g
Lee, 2016, Chem. Commun., 52, 6150, 10.1039/C6CC00708B
Min, 2012, J. Phys. Chem. C, 116, 25415, 10.1021/jp3093786
Zhao, 2015, J. Mater. Chem. A, 3, 7375, 10.1039/C5TA00402K
Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589
Nicolosi, 2013, Science, 340, 1226419, 10.1126/science.1226419
Vattikuti, 2016, Mater. Res. Bull., 75, 193, 10.1016/j.materresbull.2015.11.059
Vattikuti, 2016, Superlattices Microstruct., 94, 39, 10.1016/j.spmi.2016.03.042
Voiry, 2016, Adv. Mater., 28, 6197, 10.1002/adma.201505597
Wang, 2014, Small, 10, 2165, 10.1002/smll.201303711
Wang, 2013, Adv. Energy Mater., 3, 798, 10.1002/aenm.201201000
Wang, 2013, J. Mater. Chem. A, 1, 2202, 10.1039/C2TA00598K
Youn, 2015, J. Power Sources, 295, 228, 10.1016/j.jpowsour.2015.07.013
Zhou, 2016, Mater. Chem. Phys., 171, 16, 10.1016/j.matchemphys.2015.12.061
Koppens, 2014, Nat. Nanotechnol., 9, 780, 10.1038/nnano.2014.215
Yazyev, 2015, Mater. Today, 18, 20, 10.1016/j.mattod.2014.07.005
Ma, 2011, Nanoscale, 3, 3883, 10.1039/c1nr10577a
Chen, 2013, Nanoscale, 5, 7890, 10.1039/c3nr02920d
Sun, 2014, Nanoscale, 6, 8359, 10.1039/C4NR01894J
Voiry, 2015, Nat. Chem., 7, 45, 10.1038/nchem.2108
Maitra, 2013, Angew. Chem., Int. Ed., 52, 13057, 10.1002/anie.201306918
Zhu, 2014, Chem. Commun., 50, 15435, 10.1039/C4CC06480A
Zan, 2015, J. Alloys Compd., 649, 961, 10.1016/j.jallcom.2015.05.149
Shih, 2014, ACS Nano, 8, 5790, 10.1021/nn500676t
Han, 2014, Int. J. Hydrogen Energy, 39, 19502, 10.1016/j.ijhydene.2014.09.043
Gao, 2015, Chem. Commun., 51, 1709, 10.1039/C4CC08984G
Ding, 2015, Appl. Surf. Sci., 357, 1606, 10.1016/j.apsusc.2015.10.030
Hu, 2014, J. Colloid Interface Sci., 431, 42, 10.1016/j.jcis.2014.05.023
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Baker, 2010, Angew. Chem., Int. Ed., 49, 6726, 10.1002/anie.200906623
Xu, 2014, Nanoscale, 6, 10307, 10.1039/C4NR02792B
Xu, 2015, Nanoscale, 7, 10527, 10.1039/C5NR02198G
Carey, 2015, Chem. Commun., 51, 3770, 10.1039/C4CC08399G
Zhou, 2011, Angew. Chem., Int. Ed., 50, 10839, 10.1002/anie.201105364
Fang, 2013, Chem.–Eur. J., 19, 5694, 10.1002/chem.201204254
Schutte, 1987, J. Solid State Chem., 70, 207, 10.1016/0022-4596(87)90057-0
Heising, 1999, J. Am. Chem. Soc., 121, 11720, 10.1021/ja991644d
Ramasubramaniam, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 86, 115409, 10.1103/PhysRevB.86.115409
Chung, 2002, J. Mater. Sci., 37, 1475, 10.1023/A:1014915307738
Slonczewski, 1958, Phys. Rev., 109, 272, 10.1103/PhysRev.109.272
Dong, 2012, Carbon, 50, 2810, 10.1016/j.carbon.2012.02.046
Salje, 1997, J. Phys.: Condens. Matter, 9, 6563
Le Houx, 2010, J. Phys. Chem. C, 114, 155, 10.1021/jp908669u
Shi, 2013, Sci. Rep., 3, 1839, 10.1038/srep01839
Gutiérrez, 2013, Nano Lett., 13, 3447, 10.1021/nl3026357
Song, 2013, ACS Nano, 7, 11333, 10.1021/nn405194e
Peimyoo, 2012, ACS Nano, 6, 8878, 10.1021/nn302876w
Ding, 2013, New J. Chem., 37, 2515, 10.1039/c3nj00366c
Hassan, 2009, J. Mater. Chem., 19, 3832, 10.1039/b906253j
Dresselhaus, 2010, Philos. Trans. R. Soc., A, 368, 5355, 10.1098/rsta.2010.0213
Voldman, 2013, Macromol. Chem. Phys., 214, 2007, 10.1002/macp.201300283
Zhao, 2013, ACS Nano, 7, 791, 10.1021/nn305275h
Pagona, 2015, Chem. Commun., 51, 12950, 10.1039/C5CC04689K
Vega-Mayoral, 2016, Nanoscale, 8, 5428, 10.1039/C5NR08384B
Alsaif, 2014, Adv. Mater., 26, 3931, 10.1002/adma.201306097
Lachheb, 2002, Appl. Catal., B, 39, 75, 10.1016/S0926-3373(02)00078-4
Liu, 2016, Appl. Catal., B, 183, 231, 10.1016/j.apcatb.2015.10.054
Liu, 2015, Chem. Soc. Rev., 44, 2643, 10.1039/C4CS00301B
Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Qianwen, 2013, J. Phys. D: Appl. Phys., 46, 505308, 10.1088/0022-3727/46/50/505308
Li, 2007, J. Mater. Chem., 17, 2406, 10.1039/B618518E
Wilder, 1998, Nature, 391, 59, 10.1038/34139
Wang, 2011, Phys. Status Solidi A, 208, 2339, 10.1002/pssa.201084174
Yang, 2015, Sci. Rep., 5, 11641, 10.1038/srep11641
Ramesha, 2011, J. Colloid Interface Sci., 361, 270, 10.1016/j.jcis.2011.05.050
J. J.
Spivey
, G. W.Roberts, J. G.Goodwin Jr., S.Kim and W. D.Rhodes, Turnover Frequencies in Metal Catalysis: Meanings, Functionalities and Relationships, The Royal Society of Chemistry, 2004
Daeneke, 2015, J. Mater. Chem. C, 3, 4771, 10.1039/C5TC00288E