2D WS2/carbon dot hybrids with enhanced photocatalytic activity

Journal of Materials Chemistry A - Tập 4 Số 35 - Trang 13563-13571
Paul Atkin1,2,3,4,5, Torben Daeneke6,3,4,5, Yichao Wang6,3,4,5, Benjamin J. Carey1,2,3,4,5, Kyle J. Berean6,3,4,5, R. M. Clark1,2,3,4,5, J. Z. Ou6,3,4,5, Adrian Trinchi6,2,7, Ivan Cole6,2,7, Kourosh Kalantar‐zadeh6,3,4,5
1CSIRO, Australia
2CSIRO Australia, Private Bag 33, Clayton South MDC, Clayton, Victoria 3169, Australia
3Melbourne
4RMIT University
5School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001, Australia
6Australia
7Clayton

Tóm tắt

Novel 2D WS2/carbon dot hybrids were synthesised using liquid phase exfoliation and microwave irradiation leading to enhanced photocatalytic activity.

Từ khóa


Tài liệu tham khảo

Sang, 2015, Adv. Mater., 27, 363, 10.1002/adma.201403264

Di Paola, 1999, J. Phys. Chem. B, 103, 8236, 10.1021/jp9911797

Guardia, 2014, RSC Adv., 4, 14115, 10.1039/C4RA00212A

Low, 2014, Chem. Commun., 50, 10768, 10.1039/C4CC02553A

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

Ho, 2004, Langmuir, 20, 5865, 10.1021/la049838g

Lee, 2016, Chem. Commun., 52, 6150, 10.1039/C6CC00708B

Min, 2012, J. Phys. Chem. C, 116, 25415, 10.1021/jp3093786

Zhao, 2015, J. Mater. Chem. A, 3, 7375, 10.1039/C5TA00402K

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Nicolosi, 2013, Science, 340, 1226419, 10.1126/science.1226419

Vattikuti, 2016, Mater. Res. Bull., 75, 193, 10.1016/j.materresbull.2015.11.059

Vattikuti, 2016, Superlattices Microstruct., 94, 39, 10.1016/j.spmi.2016.03.042

Voiry, 2016, Adv. Mater., 28, 6197, 10.1002/adma.201505597

Wang, 2014, Small, 10, 2165, 10.1002/smll.201303711

Wang, 2013, Adv. Energy Mater., 3, 798, 10.1002/aenm.201201000

Wang, 2013, J. Mater. Chem. A, 1, 2202, 10.1039/C2TA00598K

Youn, 2015, J. Power Sources, 295, 228, 10.1016/j.jpowsour.2015.07.013

Zhou, 2016, Mater. Chem. Phys., 171, 16, 10.1016/j.matchemphys.2015.12.061

Koppens, 2014, Nat. Nanotechnol., 9, 780, 10.1038/nnano.2014.215

Yazyev, 2015, Mater. Today, 18, 20, 10.1016/j.mattod.2014.07.005

Ma, 2011, Nanoscale, 3, 3883, 10.1039/c1nr10577a

Chen, 2013, Nanoscale, 5, 7890, 10.1039/c3nr02920d

Sun, 2014, Nanoscale, 6, 8359, 10.1039/C4NR01894J

Voiry, 2015, Nat. Chem., 7, 45, 10.1038/nchem.2108

Maitra, 2013, Angew. Chem., Int. Ed., 52, 13057, 10.1002/anie.201306918

Zhu, 2014, Chem. Commun., 50, 15435, 10.1039/C4CC06480A

Zan, 2015, J. Alloys Compd., 649, 961, 10.1016/j.jallcom.2015.05.149

Shih, 2014, ACS Nano, 8, 5790, 10.1021/nn500676t

Han, 2014, Int. J. Hydrogen Energy, 39, 19502, 10.1016/j.ijhydene.2014.09.043

Gao, 2015, Chem. Commun., 51, 1709, 10.1039/C4CC08984G

Ding, 2015, Appl. Surf. Sci., 357, 1606, 10.1016/j.apsusc.2015.10.030

Hu, 2014, J. Colloid Interface Sci., 431, 42, 10.1016/j.jcis.2014.05.023

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Baker, 2010, Angew. Chem., Int. Ed., 49, 6726, 10.1002/anie.200906623

Xu, 2014, Nanoscale, 6, 10307, 10.1039/C4NR02792B

Xu, 2015, Nanoscale, 7, 10527, 10.1039/C5NR02198G

Carey, 2015, Chem. Commun., 51, 3770, 10.1039/C4CC08399G

Zhou, 2011, Angew. Chem., Int. Ed., 50, 10839, 10.1002/anie.201105364

Fang, 2013, Chem.–Eur. J., 19, 5694, 10.1002/chem.201204254

Schutte, 1987, J. Solid State Chem., 70, 207, 10.1016/0022-4596(87)90057-0

Heising, 1999, J. Am. Chem. Soc., 121, 11720, 10.1021/ja991644d

Ramasubramaniam, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 86, 115409, 10.1103/PhysRevB.86.115409

Chung, 2002, J. Mater. Sci., 37, 1475, 10.1023/A:1014915307738

Slonczewski, 1958, Phys. Rev., 109, 272, 10.1103/PhysRev.109.272

Dong, 2012, Carbon, 50, 2810, 10.1016/j.carbon.2012.02.046

Salje, 1997, J. Phys.: Condens. Matter, 9, 6563

Le Houx, 2010, J. Phys. Chem. C, 114, 155, 10.1021/jp908669u

Shi, 2013, Sci. Rep., 3, 1839, 10.1038/srep01839

Gutiérrez, 2013, Nano Lett., 13, 3447, 10.1021/nl3026357

Song, 2013, ACS Nano, 7, 11333, 10.1021/nn405194e

Peimyoo, 2012, ACS Nano, 6, 8878, 10.1021/nn302876w

Ding, 2013, New J. Chem., 37, 2515, 10.1039/c3nj00366c

Hassan, 2009, J. Mater. Chem., 19, 3832, 10.1039/b906253j

Dresselhaus, 2010, Philos. Trans. R. Soc., A, 368, 5355, 10.1098/rsta.2010.0213

Voldman, 2013, Macromol. Chem. Phys., 214, 2007, 10.1002/macp.201300283

Zhao, 2013, ACS Nano, 7, 791, 10.1021/nn305275h

Pagona, 2015, Chem. Commun., 51, 12950, 10.1039/C5CC04689K

Vega-Mayoral, 2016, Nanoscale, 8, 5428, 10.1039/C5NR08384B

Alsaif, 2014, Adv. Mater., 26, 3931, 10.1002/adma.201306097

Lachheb, 2002, Appl. Catal., B, 39, 75, 10.1016/S0926-3373(02)00078-4

Liu, 2016, Appl. Catal., B, 183, 231, 10.1016/j.apcatb.2015.10.054

Liu, 2015, Chem. Soc. Rev., 44, 2643, 10.1039/C4CS00301B

Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

Qianwen, 2013, J. Phys. D: Appl. Phys., 46, 505308, 10.1088/0022-3727/46/50/505308

Li, 2007, J. Mater. Chem., 17, 2406, 10.1039/B618518E

Wilder, 1998, Nature, 391, 59, 10.1038/34139

Wang, 2011, Phys. Status Solidi A, 208, 2339, 10.1002/pssa.201084174

Yang, 2015, Sci. Rep., 5, 11641, 10.1038/srep11641

Ramesha, 2011, J. Colloid Interface Sci., 361, 270, 10.1016/j.jcis.2011.05.050

J. J. Spivey , G. W.Roberts, J. G.Goodwin Jr., S.Kim and W. D.Rhodes, Turnover Frequencies in Metal Catalysis: Meanings, Functionalities and Relationships, The Royal Society of Chemistry, 2004

Daeneke, 2015, J. Mater. Chem. C, 3, 4771, 10.1039/C5TC00288E