28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell

Joule - Tập 5 - Trang 3169-3186 - 2021
Jiang Liu1, Erkan Aydin1, Jun Yin2, Michele De Bastiani1, Furkan H. Isikgor1, Atteq Ur Rehman1, Emre Yengel1, Esma Ugur1, George T. Harrison1, Mingcong Wang1, Yajun Gao1, Jafar Iqbal Khan1, Maxime Babics1, Thomas G. Allen1, Anand S. Subbiah1, Kaichen Zhu3, Xiaopeng Zheng2, Wenbo Yan1, Fuzong Xu1, Michael F. Salvador1
1KAUST Solar Center (KSC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
2Advanced Membranes and Porous Materials Center (AMPMC) and KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
3Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

Tài liệu tham khảo

Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604 Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 De Bastiani, 2020, Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects, Mater. Horiz., 7, 2791, 10.1039/D0MH00990C Werner, 2018, Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - an overview, Adv. Mater. Interfaces, 5, 1700731, 10.1002/admi.201700731 Leijtens, 2018, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors, Nat. Energy, 3, 828, 10.1038/s41560-018-0190-4 Lal, 2017, Perovskite tandem solar cells, Adv. Energy Mater., 7, 1602761, 10.1002/aenm.201602761 Mazzarella, 2019, Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25, Adv. Energy Mater., 9, 1803241, 10.1002/aenm.201803241 Kim, 2020, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites, Science, 368, 155, 10.1126/science.aba3433 Chen, 2019, Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4, Joule, 3, 177, 10.1016/j.joule.2018.10.003 Chen, 2020, Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells, Joule, 4, 850, 10.1016/j.joule.2020.01.008 Sahli, 2018, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nat. Mater., 17, 820, 10.1038/s41563-018-0115-4 Aydin, 2020, Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells, Nat. Energy, 5, 851, 10.1038/s41560-020-00687-4 Hou, 2020, Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon, Science, 367, 1135, 10.1126/science.aaz3691 Al-Ashouri, 2020, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science, 370, 1300, 10.1126/science.abd4016 Aydin, 2021, Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n-i-p perovskite/silicon tandem solar cells, Energy Environ. Sci., 14, 4377, 10.1039/D1EE01206A Bush, 2017, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy, 2, 17009, 10.1038/nenergy.2017.9 N.R.E.L. (2021) Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. Allen, 2019, Passivating contacts for crystalline silicon solar cells, Nat. Energy, 4, 914, 10.1038/s41560-019-0463-6 Yoshikawa, 2017, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26, Nat. Energy, 2, 17032, 10.1038/nenergy.2017.32 Knight, 2020, Preventing phase segregation in mixed-halide perovskites: a perspective, Energy Environ. Sci., 13, 2024, 10.1039/D0EE00788A Hoke, 2015, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 6, 613, 10.1039/C4SC03141E Zhao, 2020, Strain-activated light-induced halide segregation in mixed-halide perovskite solids, Nat. Commun., 11, 6328, 10.1038/s41467-020-20066-7 Duong, 2020, High Efficiency perovskite–silicon Tandem Solar Cells: effect of Surface Coating versus Bulk Incorporation of 2D perovskite, Adv. Energy Mater., 10, 1903553, 10.1002/aenm.201903553 Xu, 2020, Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems, Science, 367, 1097, 10.1126/science.aaz5074 Bush, 2018, Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation, ACS Energy Lett, 3, 428, 10.1021/acsenergylett.7b01255 Rehman, 2017, Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties, Energy Environ. Sci., 10, 361, 10.1039/C6EE03014A Zhou, 2018, Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement, Adv. Funct. Mater., 28, 1803130, 10.1002/adfm.201803130 Braly, 2017, Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design, ACS Energy Lett, 2, 1841, 10.1021/acsenergylett.7b00525 Abdi-Jalebi, 2018, Maximizing and stabilizing luminescence from halide perovskites with potassium passivation, Nature, 555, 497, 10.1038/nature25989 Zhou, 2017, Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance, Adv. Energy Mater., 7, 1701048, 10.1002/aenm.201701048 Isikgor, 2021, Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation, Joule, 5, 1566, 10.1016/j.joule.2021.05.013 Bush, 2018, Controlling thin-film stress and wrinkling during perovskite film formation, ACS Energy Lett, 3, 1225, 10.1021/acsenergylett.8b00544 Turren-Cruz, 2018, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture, Science, 362, 449, 10.1126/science.aat3583 Chen, 2019, Imperfections and their passivation in halide perovskite solar cells, Chem. Soc. Rev., 48, 3842, 10.1039/C8CS00853A Yang, 2019, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells, J. Am. Chem. Soc., 141, 5781, 10.1021/jacs.8b13091 Aydin, 2019, Defect and contact passivation for perovskite solar cells, Adv. Mater., 31, 10.1002/adma.201900428 Wang, 2019, Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics, Science, 366, 1509, 10.1126/science.aay9698 Bai, 2019, Planar perovskite solar cells with long-term stability using ionic liquid additives, Nature, 571, 245, 10.1038/s41586-019-1357-2 Lin, 2020, A piperidinium salt stabilizes efficient metal-halide perovskite solar cells, Science, 369, 96, 10.1126/science.aba1628 Ugur, 2020, How humidity and light exposure change the photophysics of metal halide perovskite solar cells, Sol. RRL, 4, 2000382, 10.1002/solr.202000382 Belisle, 2018, Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites, ACS Energy Lett, 3, 2694, 10.1021/acsenergylett.8b01562 Eames, 2015, Ionic transport in hybrid lead iodide perovskite solar cells, Nat. Commun., 6, 7497, 10.1038/ncomms8497 Yuan, 2016, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability, Acc. Chem. Res., 49, 286, 10.1021/acs.accounts.5b00420 Jana, 2015, Physical and structural characterization of Biofield energy treated carbazole, Pharm. Anal. Acta, 6, 1000435, 10.4172/2153-2435.1000435 Stolterfoht, 2018, Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells, Nat. Energy, 3, 847, 10.1038/s41560-018-0219-8 Braly, 2018, Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency, Nature Photon, 12, 355, 10.1038/s41566-018-0154-z Santbergen, 2016, Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell, Opt. Express, 24, A1288, 10.1364/OE.24.0A1288 Caprioglio, 2021, Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites, ACS Energy Lett, 6, 419, 10.1021/acsenergylett.0c02270 Zhao, 2017, Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells, Sci. Adv., 3, 10.1126/sciadv.aao5616 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758