28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell
Tài liệu tham khảo
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
De Bastiani, 2020, Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects, Mater. Horiz., 7, 2791, 10.1039/D0MH00990C
Werner, 2018, Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - an overview, Adv. Mater. Interfaces, 5, 1700731, 10.1002/admi.201700731
Leijtens, 2018, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors, Nat. Energy, 3, 828, 10.1038/s41560-018-0190-4
Lal, 2017, Perovskite tandem solar cells, Adv. Energy Mater., 7, 1602761, 10.1002/aenm.201602761
Mazzarella, 2019, Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25, Adv. Energy Mater., 9, 1803241, 10.1002/aenm.201803241
Kim, 2020, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites, Science, 368, 155, 10.1126/science.aba3433
Chen, 2019, Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4, Joule, 3, 177, 10.1016/j.joule.2018.10.003
Chen, 2020, Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells, Joule, 4, 850, 10.1016/j.joule.2020.01.008
Sahli, 2018, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nat. Mater., 17, 820, 10.1038/s41563-018-0115-4
Aydin, 2020, Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells, Nat. Energy, 5, 851, 10.1038/s41560-020-00687-4
Hou, 2020, Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon, Science, 367, 1135, 10.1126/science.aaz3691
Al-Ashouri, 2020, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science, 370, 1300, 10.1126/science.abd4016
Aydin, 2021, Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n-i-p perovskite/silicon tandem solar cells, Energy Environ. Sci., 14, 4377, 10.1039/D1EE01206A
Bush, 2017, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy, 2, 17009, 10.1038/nenergy.2017.9
N.R.E.L. (2021) Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html.
Allen, 2019, Passivating contacts for crystalline silicon solar cells, Nat. Energy, 4, 914, 10.1038/s41560-019-0463-6
Yoshikawa, 2017, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26, Nat. Energy, 2, 17032, 10.1038/nenergy.2017.32
Knight, 2020, Preventing phase segregation in mixed-halide perovskites: a perspective, Energy Environ. Sci., 13, 2024, 10.1039/D0EE00788A
Hoke, 2015, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 6, 613, 10.1039/C4SC03141E
Zhao, 2020, Strain-activated light-induced halide segregation in mixed-halide perovskite solids, Nat. Commun., 11, 6328, 10.1038/s41467-020-20066-7
Duong, 2020, High Efficiency perovskite–silicon Tandem Solar Cells: effect of Surface Coating versus Bulk Incorporation of 2D perovskite, Adv. Energy Mater., 10, 1903553, 10.1002/aenm.201903553
Xu, 2020, Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems, Science, 367, 1097, 10.1126/science.aaz5074
Bush, 2018, Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation, ACS Energy Lett, 3, 428, 10.1021/acsenergylett.7b01255
Rehman, 2017, Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties, Energy Environ. Sci., 10, 361, 10.1039/C6EE03014A
Zhou, 2018, Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement, Adv. Funct. Mater., 28, 1803130, 10.1002/adfm.201803130
Braly, 2017, Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design, ACS Energy Lett, 2, 1841, 10.1021/acsenergylett.7b00525
Abdi-Jalebi, 2018, Maximizing and stabilizing luminescence from halide perovskites with potassium passivation, Nature, 555, 497, 10.1038/nature25989
Zhou, 2017, Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance, Adv. Energy Mater., 7, 1701048, 10.1002/aenm.201701048
Isikgor, 2021, Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation, Joule, 5, 1566, 10.1016/j.joule.2021.05.013
Bush, 2018, Controlling thin-film stress and wrinkling during perovskite film formation, ACS Energy Lett, 3, 1225, 10.1021/acsenergylett.8b00544
Turren-Cruz, 2018, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture, Science, 362, 449, 10.1126/science.aat3583
Chen, 2019, Imperfections and their passivation in halide perovskite solar cells, Chem. Soc. Rev., 48, 3842, 10.1039/C8CS00853A
Yang, 2019, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells, J. Am. Chem. Soc., 141, 5781, 10.1021/jacs.8b13091
Aydin, 2019, Defect and contact passivation for perovskite solar cells, Adv. Mater., 31, 10.1002/adma.201900428
Wang, 2019, Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics, Science, 366, 1509, 10.1126/science.aay9698
Bai, 2019, Planar perovskite solar cells with long-term stability using ionic liquid additives, Nature, 571, 245, 10.1038/s41586-019-1357-2
Lin, 2020, A piperidinium salt stabilizes efficient metal-halide perovskite solar cells, Science, 369, 96, 10.1126/science.aba1628
Ugur, 2020, How humidity and light exposure change the photophysics of metal halide perovskite solar cells, Sol. RRL, 4, 2000382, 10.1002/solr.202000382
Belisle, 2018, Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites, ACS Energy Lett, 3, 2694, 10.1021/acsenergylett.8b01562
Eames, 2015, Ionic transport in hybrid lead iodide perovskite solar cells, Nat. Commun., 6, 7497, 10.1038/ncomms8497
Yuan, 2016, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability, Acc. Chem. Res., 49, 286, 10.1021/acs.accounts.5b00420
Jana, 2015, Physical and structural characterization of Biofield energy treated carbazole, Pharm. Anal. Acta, 6, 1000435, 10.4172/2153-2435.1000435
Stolterfoht, 2018, Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells, Nat. Energy, 3, 847, 10.1038/s41560-018-0219-8
Braly, 2018, Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency, Nature Photon, 12, 355, 10.1038/s41566-018-0154-z
Santbergen, 2016, Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell, Opt. Express, 24, A1288, 10.1364/OE.24.0A1288
Caprioglio, 2021, Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites, ACS Energy Lett, 6, 419, 10.1021/acsenergylett.0c02270
Zhao, 2017, Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells, Sci. Adv., 3, 10.1126/sciadv.aao5616
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758