2-Xor Revisited: Satisfiability and Probabilities of Functions

Springer Science and Business Media LLC - Tập 76 - Trang 1035-1076 - 2016
Élie de Panafieu1, Danièle Gardy2, Bernhard Gittenberger3, Markus Kuba4
1Alcatel-Lucent Bell Labs, Villarceau, France
2DAVID Laboratory, University of Versailles Saint Quentin en Yvelines, Versailles, France
3Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria
4Institute of Applied Mathematics and Natural Sciences, FH-Technikum Wien, Wien, Austria

Tóm tắt

The problem 2-Xor-Sat asks for the probability that a random expression, built as a conjunction of clauses $$x \oplus y$$ , is satisfiable. We revisit this classical problem by giving an alternative, explicit expression of this probability. We then consider a refinement of it, namely the probability that a random expression computes a specific Boolean function. The answers to both problems involve a description of 2-Xor expressions as multigraphs and use classical methods of analytic combinatorics by expressing probabilities through coefficients of generating functions.

Tài liệu tham khảo

Andrews, G.E.: The theory of partitions. In: Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley Publishing Co., Reading (1976) Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Struct. Algorithms 19(3–4), 194–246 (2001) Bender, E.A., Canfield, E.R., McKay, B.D.: The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Struct. Algorithms 1(2), 127–170 (1990) Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory. Oxford University Press, Oxford (1974) Brodsky, A., Pippenger, N.: The Boolean functions computed by random Boolean formulas or how to grow the right function. Random Struct. Algorithms 27, 490–519 (2005) Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Comb. Probab. Comput. 13(4–5), 475–497 (2004) Chauvin, B., Gardy, D., Mailler, C.: The growing tree distribution for Boolean functions. In: 8th SIAM Workshop on Analytic and Combinatorics (ANALCO), pp. 45–56 (2011) Comtet, L.: Advanced Combinatorics, enlarged edn. D. Reidel Publishing Co., Dordrecht (1974) Creignou, N., Daudé, H.: Satisfiability threshold for random XOR-CNF formulas. Discrete Appl. Math. 96–97, 41–53 (1999) Creignou, N., Daudé, H.: Smooth and sharp thresholds for random \(k\)-XOR-CNF satisfiability. Theor. Inform. Appl. 37(2), 127–147 (2003) Creignou, N., Daudé, H.: Coarse and sharp transitions for random generalized satisfiability problems. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds.) Mathematics and Computer Science III, Trends Mathematics, pp. 507–516. Birkhäuser, Basel (2004) Creignou, N., Daudé, H., Dubois, O.: Approximating the satisfiability threshold for random \(k\)-XOR-formulas. Comb. Probab. Comput. 12(2), 113–126 (2003) Creignou, N., Daudé, H., Egly, U.: Phase transition for random quantified XOR-formulas. J. Artif. Intell. Res. 29, 1–18 (2007) Daudé, H., Ravelomanana, V.: Random 2XorSat phase transition. Algorithmica 59(1), 48–65 (2011) de Panafieu, E.: Analytic Combinatorics of Graphs, Hypergraphs and Inhomogeneous Graphs. PhD thesis, Université Paris-Diderot, Sorbonne Paris-Cité (2014) de Panafieu, E., Gardy, D., Gittenberger, B., Kuba, M.: Probabilities of 2-xor functions. In: Pardo, A., Viola, A. (eds.) International Conference LATIN, vol 8392. Springer Lecture Notes in Computer Science (2014) de Panafieu, E., Ravelomanana, V.: Analytic description of the phase transition of inhomogeneous multigraphs. Eur. J. Comb. (2014). Accepted. Also available at http://arxiv.org/pdf/1409.8424.pdf Drmota, M.: Random trees. Springer, Vienna (2009) Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959) Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Discrete Math. 75(1–3), 167–215 (1989) Flajolet, P., Salvy, B., Schaeffer, G.: Airy phenomena and analytic combinatorics of connected graphs. Electron. J. Comb. 11(1), R34 (30 pages) (2004) Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) Fournier, H., Gardy, D., Genitrini, A., Gittenberger, B.: The fraction of large random trees representing a given Boolean function in implicational logic. Random Struct. Algorithms 40(3), 317–349 (2012) Fournier, H., Gardy, D., Genitrini, A., Zaionc, M.: Classical and intuitionistic logic are asymptotically identical. In: 16th Annual Conference on Computer Science Logic (EACSL), vol 4646 of Lecture Notes in Computer Science, pp. 177–193 (2007) Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Associative and Commutative Tree Representations for Boolean Functions. (2011). Submitted. Also available at http://arxiv.org/abs/1305.0651 Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Probabilities of Boolean functions given by random implicational formulas. Electron. J. Comb. 19(2), P37 (20 pages) (electronic) (2012) Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. classical tautologies, quantitative comparison. In: Types for Proofs and Programs, vol. 4941, pp. 100–109. Springer Lecture Notes in Computer Science (2008) Janson, S., Knuth, D., Łuczak, T., Pittel, B.: The birth of the giant component. Random Struct. Algorithms 4(3), 233–358 (1993) Kozik, J.: Subcritical pattern languages for And/Or trees. In: Fifth Colloquium on Mathematics and Computer Science, Blaubeuren, Germany, September (2008). DMTCS Proceedings Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Struct. Algorithms 10, 337–351 (1997) Pittel, B., Wormald, N.C.: Counting connected graphs inside-out. J. Comb. Theory Ser. B 93(2), 127–172 (2005) Pittel, B., Yeum, J.-A.: How frequently is a system of 2-linear equations solvable? Electron. J. Comb. 17, R92 (50 pages) (2010) van der Hofstad, R., Spencer, J.: Counting connected graphs asymptotically. Eur. J. Comb. 26(8), 1294–1320 (2006) Woods, A.: On the probability of absolute truth for And/Or formulas. Bull. Symb. Logic 12(3), 523 (2005) Wright, E.M.: The number of connected sparsely edged graphs. J. Graph Theory 1, 317–330 (1977) Wright, E.M.: The number of connected sparsely edged graphs III: asymptotic results. J. Graph Theory 4(4), 393–407 (1980) Zaionc, M.: On the asymptotic density of tautologies in logic of implication and negation. Rep. Math. Logic 39, 67–87 (2005)