1H NMR Spectroscopy and MVA to Evaluate the Effects of Caulerpin-Based Diet on Diplodus sargus Lipid Profiles

Marine Drugs - Tập 16 Số 10 - Trang 390
Laura Del Coco1, Fabrizio Serena2, Chiara Roberta Girelli1, Federica Angilè1, Laura Magliozzi3, Frederico Almada4, Biagio D’Aniello3, Ernesto Mollo5, Antonio Terlizzi2,6, Francesco Paolo Fanizzi1
1Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, 73100 Lecce, Italy
2Consorzio Interuniversitario per le Scienze del Mare (CoNISMa), 00196 Roma, Italy
3Dipartimento di Biologia, Università Degli Studi di Napoli “Federico II”, 80126, Napoli, Italy
4MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário, 1140-041 Lisbon, Portugal
5Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, 80078, Pozzuoli, Italy
6Department of Biology and Evolution of Marine Organisms, Stazione Zoologica A. Dohrn, 80121 Napoli, Italy

Tóm tắt

The biological invasion of the green algae Caulerpa cylindracea represents a serious scientific and public issue in the Mediterranean Sea, essentially due to strong modifications both to habitat structure and native benthic communities. Although alterations in health status and changes in flesh quality of some marine species (dietary exposed to C. cylindracea) have been observed, no studies on cause-effect relationships have been carried out. Here, for the first time, through a controlled feeding experiment followed by 1H NMR Spectroscopy and multivariate analysis (PCA, OPLS-DA), we showed that caulerpin taken with diet is directly responsible of changes observed in metabolic profile of fish flesh, including alteration of lipid metabolism, in particular with a reduction of ω3 PUFA content. The potential of caulerpin to directly modulate lipid metabolism opens up new questions about causal mechanism triggered by algal metabolite also in view of a possible exploitation in the nutraceutical/medical field.

Từ khóa


Tài liệu tham khảo

Bax, 2003, Marine invasive alien species: A threat to global biodiversity, Mar. Policy, 27, 313, 10.1016/S0308-597X(03)00041-1

Simberloff, 2013, Impacts of biological invasions: What’s what and the way forward, Trends Ecol. Evol., 28, 58, 10.1016/j.tree.2012.07.013

Mollo, 2008, Factors promoting marine invasions: A chemoecological approach, Proc. Natl. Acad. Sci. USA, 105, 4582, 10.1073/pnas.0709355105

Mollo, 2015, Alien biomolecules: A new challenge for natural product chemists, Biol. Invasions, 17, 941, 10.1007/s10530-014-0835-6

Terlizzi, 2011, Detrimental physiological effects of the invasive alga Caulerpa racemosa on the Mediterranean white seabream Diplodus sargus, Aquat. Biol., 12, 109, 10.3354/ab00330

Felline, S., Caricato, R., Cutignano, A., Gorbi, S., Lionetto, M.G., Mollo, E., Regoli, F., and Terlizzi, A. (2012). Subtle effects of biological invasions: Cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS ONE, 7.

Gorbi, 2014, Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus?, Mar. Environ. Res., 96, 2, 10.1016/j.marenvres.2014.01.010

Klein, 2008, The Caulerpa racemosa invasion: A critical review, Mar. Pollut. Bull., 56, 205, 10.1016/j.marpolbul.2007.09.043

Thibaut, 2011, Invasive alga Caulerpa racemosa var. cylindracea makes a strong impact on the Mediterranean sponge Sarcotragus spinosulus, Biol. Invasions, 13, 2303, 10.1007/s10530-011-0043-6

Alomar, 2016, Caulerpa cylindracea Sonder invasion modifies trophic niche in infralittoral rocky benthic community, Mar. Environ. Res., 120, 86, 10.1016/j.marenvres.2016.07.010

Streftaris, 2006, Alien marine species in the Mediterranean-the 100 ‘Worst Invasives’ and their impact, Mediterr. Mar. Sci., 7, 87, 10.12681/mms.180

Pohnert, 2003, Intracellular compartmentation in the biosynthesis of caulerpenyne: Study on intact macroalgae using stable-isotope-labeled precursors, Org. Lett., 5, 5091, 10.1021/ol036163k

Smyrniotopoulos, 2003, Acetylene sesquiterpenoid esters from the green alga Caulerpa prolifera, J. Nat. Prod., 66, 21, 10.1021/np0202529

Erickson, 2006, Palatability of macroalgae that use different types of chemical defenses, J. Chem. Ecol., 32, 1883, 10.1007/s10886-006-9116-x

Raniello, 2007, Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: A potential allelochemical, Biol. Invasions, 9, 361, 10.1007/s10530-006-9044-2

Felline, 2017, Preliminary observations of caulerpin accumulation from the invasive Caulerpa cylindracea in native Mediterranean fish species, Aquat. Biol., 26, 27, 10.3354/ab00671

Felline, 2014, Can a marine pest reduce the nutritional value of Mediterranean fish flesh?, Mar. Biol., 161, 1275, 10.1007/s00227-014-2417-7

Felline, 2015, 1H NMR spectroscopy and MVA analysis of Diplodus sargus eating the exotic pest Caulerpa cylindracea, Mar. Drugs, 13, 3550, 10.3390/md13063550

Ara, 2002, Hypolipidaemic activity of seaweed from Karachi coast, Phytother. Res., 16, 479, 10.1002/ptr.909

Ghini, 2015, Metabolomics profiling of pre-and post-anesthesia plasma samples of colorectal patients obtained via Ficoll separation, Metabolomics, 11, 1769, 10.1007/s11306-015-0832-5

Girelli, 2018, 1H-NMR-based metabolomic profiles of different sweet melon (Cucumis melo L.) Salento varieties: Analysis and comparison, Food Res. Int., 114, 81, 10.1016/j.foodres.2018.07.045

Alexandri, E., Ahmed, R., Siddiqui, H., Choudhary, M.I., Tsiafoulis, C.G., and Gerothanassis, I.P. (2017). High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules, 22.

Mannina, 2008, NMR metabolic profiling of organic and aqueous sea bass extracts: Implications in the discrimination of wild and cultured sea bass, Talanta, 77, 433, 10.1016/j.talanta.2008.07.006

Igarashi, 2000, Nondestructive quantitative determination of docosahexaenoic acid and n-3 fatty acids in fish oils by high-resolution 1H nuclear magnetic resonance spectroscopy, J. Am. Oil Chem. Soc., 77, 737, 10.1007/s11746-000-0119-0

Nestor, 2010, High-resolution 1H magic angle spinning NMR spectroscopy of intact Arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n-3 fatty acids, EPA and DHA, J. Agric. Food Chem., 58, 10799, 10.1021/jf103338j

Tocher, 2010, Fatty acid requirements in ontogeny of marine and freshwater fish, Aquac. Res., 41, 717, 10.1111/j.1365-2109.2008.02150.x

Polese, G., Alaia, R., Cacace, A., De Bonis, S., Pinelli, C., and D’Aniello, B. (2018, October 18). Effetti della Caulerpina sul Comportamento Trofico del Sarago Maggiore (Diplodus sargus). Available online: https://iris.unicampania.it/handle/11591/212408#.W8fsKyCieUk.

Magliozzi, L., Almada, F., Robalo, J., Mollo, E., Polese, G., Gonçalves, E.J., Felline, S., Terlizzi, A., and D’Aniello, B. (2017). Cryptic effects of biological invasions: Reduction of the aggressive behaviour of a native fish under the influence of an “invasive” biomolecule. PLoS ONE, 12.

Sousa, 2013, Spasmolytic effect of caulerpine involves blockade of Ca2+ influx on guinea pig ileum, Mar. Drugs, 11, 1553, 10.3390/md11051553

Hostetler, 2005, Peroxisome proliferator-activated receptor α (PPARα) interacts with high affinity and is conformationally responsive to endogenous ligands, J. Biol. Chem., 280, 18667, 10.1074/jbc.M412062200

Kaplowitz, N., and DeLeve, L.D. (2013). Oxidant stress, antioxidant defense and liver injury. Drug-Induced Liver Disease, Academic Press. [3rd ed.].

Eckel, 2005, The metabolic syndrome, Lancet, 365, 1415, 10.1016/S0140-6736(05)66378-7

Das, 2006, Essential fatty acids—A review, Curr. Pharm. Biotechnol., 7, 467, 10.2174/138920106779116856

Brasaemle, 2007, Thematic review series: Adipocyte biology. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis, J. Lipid Res., 48, 2547, 10.1194/jlr.R700014-JLR200

Kullgren, 2010, A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss), Am. J. Physiol. Regul. Integr. Comp. Physiol., 299, R1440, 10.1152/ajpregu.00281.2010

Wu, 2008, High-throughput tissue extraction protocol for NMR-and MS-based metabolomics, Anal. Biochem., 372, 204, 10.1016/j.ab.2007.10.002

Stabili, 2014, Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract, New Biotechnol., 31, 436, 10.1016/j.nbt.2014.05.002

Melis, 2014, Addressing marketplace gilthead sea bream (Sparus aurata L.) differentiation by 1H NMR-based lipid fingerprinting, Food Res. Int., 63, 258, 10.1016/j.foodres.2014.05.041

Van den Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K., and van der Werf, M.J. (2006). Centering, scaling and transformations: improving the biological information content of metabolomics data. BMC Genom., 7.

Trygg, 2002, Orthogonal projections to latent structures (O-PLS), J. Chemom., 16, 119, 10.1002/cem.695

Bro, 2014, Principal component analysis, Anal. Methods, 6, 2812, 10.1039/C3AY41907J

Eastment, 1982, Cross-validatory choice of the number of components from a principal component analysis, Technometrics, 24, 73, 10.1080/00401706.1982.10487712

Holmes, 2008, Human metabolic phenotype diversity and its association with diet and blood pressure, Nature, 453, 396, 10.1038/nature06882

(2018, October 16). Available online: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing.