18F-fluoride-PET for dynamic in vivo monitoring of bone formation in multiple myeloma

Josien C. Regelink1,2, Pieter Raijmakers3, Nathalie Bravenboer4, R. Milek5, Nikie Hoetjes3, A. M. De Kreuk6, Mark van Duin7, Mariëlle J. Wondergem1, Paul Lips8, Pieter Sonneveld7, Josée M. Zijlstra1, Sonja Zweegman1
1Department of Haematology, VU University Medical Center, Amsterdam, The Netherlands
2Department of Internal Medicine, Meander Medical Centre, Amersfoort, the Netherlands
3Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
4Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
5Janssen-Cilag B.V., Tilburg, The Netherlands
6Department of Internal Medicine, Sint Lucas Andreas Hospital, Amsterdam, The Netherlands
7Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
8Endocrine section, department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood. 2006;108:3992–6.

Von Metzler I, Krebbel H, Hecht M, et al. Bortezomib inhibits human osteoclastogenesis. Leukemia. 2007;9:2025–34.

Terpos E, Heath DJ, Rahemtulla A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol. 2006;135:688–92.

Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood. 2007;110:334–8.

Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.

Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol and Metab. 1993;77:949–55.

Piert M, Zittel TT, Becker GA, et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med. 2001;42:1091–100.

Raijmakers P, Temmerman OP, Saridin CP, et al. Quantification of 18F-fluoride kinetics: evaluation of simplified methods. J Nucl Med. 2014;7:1122–7.

Kobe C, Scheffler M, Holstein A, et al. Predictive value of early and late residual 18F-fluorodeoxyglucose and 18F-fluorothymidine uptake using different SUV measurements in patients with non-small-cell lung cancer treated with erlotinib. Eur J Nucl Med Mol Imaging. 2012;39:1117–27.

Puri T, Frost ML, Curran KM, et al. Differences in regional bone metabolism at the spine and hip: a quantitative study using (18)F-fluoride positron emission tomography. Osteoporos Int. 2013;2:633–9.

Lee SE, Min CK, Yahng SA, et al. Bone scan images reveal increased osteoblastic function after bortezomib treatment in patients with multiple myeloma. Eur J of Haem. 2010;86:83–6.

Mick CG, James T, Hill JD, et al. Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. Am J Roentgenol. 2014;203:263–71.

Terpos E, Christoulas D, Katodritou E, et al. Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodelling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int J Cancer. 2012;131:1466–71.