14-3-3 Proteins: Structure, Function, and Regulation

Annual Review of Pharmacology and Toxicology - Tập 40 Số 1 - Trang 617-647 - 2000
Haian Fu1, Romesh R. Subramanian1, Shane C. Masters1
1Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322

Tóm tắt

The 14-3-3 proteins are a family of conserved regulatory molecules expressed in all eukaryotic cells. A striking feature of the 14-3-3 proteins is their ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. This plethora of interacting proteins allows 14-3-3 to play important roles in a wide range of vital regulatory processes, such as mitogenic signal transduction, apoptotic cell death, and cell cycle control. In this review, we examine the structural basis for 14-3-3–ligand interactions, proposed functions of 14-3-3 in various signaling pathways, and emerging views of mechanisms that regulate 14-3-3 actions.

Từ khóa


Tài liệu tham khảo

Moore BW, Perez VJ. 1967. Specific acidic proteins of the nervous system. InPhysiological and Biochemical Aspects of Nervous Integration,ed. FD Carlson, pp. 343–59. Englewood Cliffs, NJ: Prentice-Hall

10.1007/BF02741386

10.1016/0962-8924(96)10029-5

Morrison D. 1994. 14-3-3: modulators of signaling proteins?Science266:56–57

10.1126/science.278.5346.2075

10.1146/annurev.arplant.47.1.49

Finnie C, Borch J, Collinge DB. 1999. 14-3-3 proteins: eukaryotic regulatory proteins with many functions.Plant Mol. Biol.40:545–54

10.1073/pnas.85.19.7084

Martin H, Patel Y, Jones D, Howell S, Robinson K, et al. 1993. Antibodies against the major brain isoforms of 14-3-3 protein: an antibody specific for the N-acetylated amino-terminus of a protein.FEBS Lett.331:296–303

10.1074/jbc.270.11.5706

10.1007/BF02339012

10.1073/pnas.90.6.2320

Zhang L, Wang H, Masters SC, Wang B, Barbieri JT, et al. 1999. Residues of 14-3-3zeta required for activation of exoenzyme S ofPseudomonas aeruginosa.Biochemistry38:12159–64

10.1016/0022-2836(91)90616-E

Boston PF, Jackson P, Thompson RJ. 1982. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders.J. Neurochem.38:1475–82

Celis JE, Gesser B, Rasmussen HH, Madsen P, Leffers H, et al. 1990. Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: the transformed amnion cells (AMA) master database and its link to genome DNA sequence data.Electrophoresis11:989–1071

10.1126/science.8085158

10.1074/jbc.274.9.5762

10.1074/jbc.273.6.3476

10.1006/jmbi.1993.1346

10.1074/jbc.273.39.25356

10.1016/0014-5793(87)81194-8

10.1111/j.1432-1033.1990.tb19138.x

10.1038/355833a0

10.1021/bi9708085

10.1016/S0092-8674(00)81872-3

10.1074/jbc.272.13.8153

10.1074/jbc.272.17.11663

10.1042/bj3270765

10.1038/371612a0

10.1126/science.7939632

10.1126/science.8085159

10.1074/jbc.270.40.23681

10.1002/j.1460-2075.1995.tb07047.x

10.1126/science.7939633

10.1073/pnas.92.22.10142

10.1073/pnas.92.17.7892

10.1074/jbc.272.43.27281

10.1074/jbc.272.40.25267

10.1016/S0092-8674(00)81382-3

10.1074/jbc.271.33.20029

10.1126/science.8036498

10.1126/science.8036497

Gelperin D, Weigle J, Nelson K, Roseboom P, Irie K, et al. 1995. 14-3-3 proteins: potential roles in vesicular transport and Ras signaling inSaccharomyces cerevisiae.Proc. Natl. Acad. Sci. USA92:11539–43

10.1073/pnas.95.3.1056

10.1016/S0960-9822(07)00535-0

10.1006/bbrc.1993.1796

Michaud NR, Fabian JR, Mathes KD, Morrison DK. 1995. 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner.Mol. Cell Biol.15:3390–97

10.1016/S0092-8674(00)81067-3

Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, et al. 1997. The structural basis for 14-3-3:phosphopeptide binding specificity.Cell91:961–71

10.1016/S1097-2765(00)80363-9

1993, J. Biol. Chem., 268, 17309, 10.1016/S0021-9258(19)85336-X

Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, et al. 1997. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.Science277:1501–5

10.1016/S0092-8674(00)80595-4

10.1074/jbc.272.15.9979

10.1074/jbc.274.14.9258

10.1093/emboj/17.7.1892

10.1038/542

10.1074/jbc.272.34.20990

10.1074/jbc.273.34.21578

10.1038/sj.onc.1202730

10.1093/oxfordjournals.jbchem.a124541

10.1074/jbc.271.13.7362

Masters SC, Pederson KJ, Zhang L, Barbieri JT, Fu H. 1999. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S ofPseudomonas aeruginosa.Biochemistry38:5216–21

10.1021/bi991353h

10.1038/376191a0

10.1038/376188a0

10.1074/jbc.272.21.13717

10.1074/jbc.273.26.16297

10.1128/MCB.18.9.5229

10.1074/jbc.273.26.16305

10.1074/jbc.270.48.28515

10.1074/jbc.273.50.33465

10.1016/S0014-5793(97)00910-1

Jones DH, Ley S, Aitken A. 1995. Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins.FEBS Lett.368:55–58

10.1002/j.1460-2075.1995.tb00165.x

Chang HC, Rubin GM. 1997. 14-3-3 epsilon positively regulates Ras-mediated signaling inDrosophila.Genes Dev.11:1132–39

10.1073/pnas.96.15.8511

10.1074/jbc.274.35.24865

10.1007/BF00690421

10.1016/S0955-0674(97)80060-9

Roberts RL, Mosch HU, Fink GR. 1997. 14-3-3 proteins are essential for RAS/ MAPK cascade signaling during pseudohyphal development inS. cerevisiae.Cell89:1055–65

10.1101/gad.11.9.1140

1997, Development, 124, 4163, 10.1242/dev.124.20.4163

10.1038/sj.onc.1202174

10.1038/27938

10.1016/S0925-4773(97)00052-X

1996, Oncogene, 12, 609

10.1126/science.7604263

10.1128/MCB.18.7.3947

10.1016/S0092-8674(00)80564-4

10.1016/0092-8674(95)90411-5

1998, Am. J. Pathol., 152, 51

10.1084/jem.189.3.575

10.1074/jbc.272.49.30866

10.1126/science.278.5338.687

10.1126/science.284.5412.339

10.1016/S1097-2765(00)80469-4

10.1016/S0092-8674(00)80405-5

10.1210/me.11.12.1858

10.1016/S0092-8674(00)81383-5

10.1016/S0955-0674(98)80149-X

10.1038/25147

1999, J. Immunol., 162, 7002, 10.4049/jimmunol.162.12.7002

Scheid MP, Duronio V. 1998. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation.Proc. Natl. Acad. Sci. USA95:7439–44

1999, Cancer Res., 59, 2815

10.1074/jbc.272.39.24101

10.1128/MCB.17.12.7040

10.1126/science.275.5296.90

Piwnica-Worms H. 1999. Fools rush in.Nature. 401:535–37

10.1016/S0968-0004(98)01291-2

10.1091/mbc.9.2.345

10.1093/emboj/18.8.2174

10.1038/26766

10.1038/16488

Zeng Y, Piwnica-Worms H. 1999. DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding.Mol. Cell Biol.19:7410–19

1994, J. Biol. Chem., 269, 30461, 10.1016/S0021-9258(18)43836-7

10.1101/gad.13.9.1067

10.1128/MCB.19.6.4465

1998, Cell Growth Differ., 9, 197

10.1126/science.277.5331.1495

Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, et al. 1997. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25.Science277:1497–501

Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE, McGowan CH. 1999. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase.Curr. Biol.9:1–10

10.1038/363368a0

Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 1999. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage.Nature401:616–20

10.1101/gad.13.17.2218

10.1006/bbrc.1996.5933

10.1016/S1097-2765(00)80002-7

10.1074/jbc.273.34.21834

10.1074/jbc.272.46.28882

10.1007/BF01076562

10.1006/bbrc.1995.2684

Spiegel S, Milstien S. 1995. Sphingolipid metabolites: members of a new class of lipid second messengers.J. Membr. Biol.146:225–37

Meller N, Liu YC, Collins TL, Bonnefoy-Berard N, Baier G, et al. 1996. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function.Mol. Cell Biol.16:5782–91

1996, Cell Growth Differ., 7, 1453

10.1006/dbio.1995.1139

10.1016/0169-328X(93)90082-Z

1998, J. Virol., 72, 558, 10.1128/JVI.72.1.558-563.1998

10.1016/S0304-419X(97)00007-3

10.1074/jbc.271.21.12254

10.1007/BF01215985

10.3233/HAB-1997-8404

10.1006/geno.1994.1481

10.1093/hmg/6.2.147

Hirotsune S, Pack SD, Chong SS, Robbins CM, Pavan WJ, et al. 1997. Genomic organization of the murine Miller-Dieker/lissencephaly region: conservation of linkage with the human region.Genome Res.7:625–34

10.1016/0304-3940(96)12598-2

10.1002/(SICI)1096-8628(19990416)88:2<164::AID-AJMG13>3.3.CO;2-V

10.1056/NEJM199609263351303

10.1056/NEJM199703203361212

10.1074/jbc.274.19.13462

Das AK, Cohen PW, Barford D. 1998. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions.EMBO J.17:1192–99

Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.Electrophoresis18:2714–23

10.1126/science.282.5395.1893

1997, J. Virol., 71, 6990, 10.1128/jvi.71.9.6990-6995.1997

Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, et al. 1999. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression.Mol. Cell Biol.19:229–40

10.1016/S0896-6273(00)80739-4

10.1016/S0960-9822(06)00152-7

10.1021/bi970893g

10.1182/blood.V91.4.1295

1989, J. Biol. Chem., 264, 15656, 10.1016/S0021-9258(19)84882-2