1-bend upward planar slope number of SP-digraphs

Computational Geometry - Tập 90 - Trang 101628 - 2020
Emilio Di Giacomo1, Giuseppe Liotta1, Fabrizio Montecchiani1
1Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy

Tài liệu tham khảo

Angelini, 2019, Universal slope sets for 1-bend planar drawings, Algorithmica, 81, 2527, 10.1007/s00453-018-00542-9 Bekos, 2018, Universal slope sets for upward planar drawings, vol. 11282, 77 Bertolazzi, 1998, Optimal upward planarity testing of single-source digraphs, SIAM J. Comput., 27, 132, 10.1137/S0097539794279626 Biedl, 1998, A better heuristic for orthogonal graph drawings, Comput. Geom., 9, 159, 10.1016/S0925-7721(97)00026-6 Binucci, 2008, Maximum upward planar subgraphs of embedded planar digraphs, Comput. Geom., 41, 230, 10.1016/j.comgeo.2008.02.001 Chung, 1987, Embedding graphs in books: a layout problem with applications to VLSI design, SIAM J. Algebraic Discrete Methods, 8, 33, 10.1137/0608002 Czyzowicz, 1991, Lattice diagrams with few slopes, J. Comb. Theory, Ser. A, 56, 96, 10.1016/0097-3165(91)90025-C Czyzowicz, 1990, Drawing orders with few slopes, Discrete Math., 82, 233, 10.1016/0012-365X(90)90201-R Di Battista, 1999 Di Giacomo, 2003, Drawing series-parallel graphs on restricted integer 3D grids, vol. 2912, 238 Di Giacomo, 2012, h-quasi planar drawings of bounded treewidth graphs in linear area, vol. 7551, 91 Di Giacomo, 2014, The planar slope number of subcubic graphs, vol. 8392, 132 Di Giacomo, 2015, Drawing outer 1-planar graphs with few slopes, J. Graph Algorithms Appl., 19, 707, 10.7155/jgaa.00376 Di Giacomo, 2016, 1-bend upward planar drawings of SP-digraphs, vol. 9801, 123 Di Giacomo, 2002, Drawing series-parallel graphs on a box, 149 Di Giacomo, 2016, Graph drawing Didimo, 2006, Upward planar drawings and switch-regularity heuristics, J. Graph Algorithms Appl., 10, 259, 10.7155/jgaa.00127 Didimo, 2009, Upward spirality and upward planarity testing, SIAM J. Discrete Math., 23, 1842, 10.1137/070696854 Dujmović, 2013, On point-sets that support planar graphs, Comput. Geom., 46, 29, 10.1016/j.comgeo.2012.03.003 Garg, 2001, On the computational complexity of upward and rectilinear planarity testing, SIAM J. Comput., 31, 601, 10.1137/S0097539794277123 Jelínek, 2013, The planar slope number of planar partial 3-trees of bounded degree, Graphs Comb., 29, 981, 10.1007/s00373-012-1157-z Keszegh, 2013, Drawing planar graphs of bounded degree with few slopes, SIAM J. Discrete Math., 27, 1171, 10.1137/100815001 Knauer, 2014, Outerplanar graph drawings with few slopes, Comput. Geom., 47, 614, 10.1016/j.comgeo.2014.01.003 Knauer, 2016, Graph drawings with one bend and few slopes, vol. 9644, 549 Lenhart, 2013, Planar and plane slope number of partial 2-trees, vol. 8242, 412 Rosenstiehl, 1986, Rectilinear planar layouts and bipolar orientations of planar graphs, Discrete Comput. Geom., 1, 343, 10.1007/BF02187706 Sugiyama, 2002, Graph Drawing and Applications for Software and Knowledge Engineers, vol. 11 Tamassia, 1986, A unified approach a visibility representation of planar graphs, Discrete Comput. Geom., 1, 321, 10.1007/BF02187705 Wade, 1994, Drawability of complete graphs using a minimal slope set, Comput. J., 37, 139, 10.1093/comjnl/37.2.139