1 H, 15 N and 13 C chemical shift assignments of the N-terminal domain of the two isoforms of the human apolipoprotein E

Biomolecular NMR Assignments - Tập 16 - Trang 191-196 - 2022
Subhendu Pandit1
1Tata Institute of Fundamental Research, Hyderabad, India

Tóm tắt

Apolipoprotein E (ApoE) is one of the major lipid transporters in humans. It is also implicated in pathological conditions like Alzheimer’s and cardiovascular diseases. The N-terminal domain of ApoE binds low-density lipoprotein receptors (LDLR) while the C-terminal domain binds to the lipid. I report the backbone and aliphatic side-chain NMR chemical shifts of the N-terminal domain of two isoforms of ApoE, namely ApoE3 NTD (BMRB No. 51,122) and ApoE4 NTD (BMRB No. 51,123) at pH 3.5 (20 °C).

Tài liệu tham khảo

Bom AP, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AM, Valente AP, Cordeiro Y, Silva JL (2010) The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 285:2857–2866. https://doi.org/10.1074/jbc.M109.075861 Carr HY, Purcell EM (1954) Effect of diffusion on free precession in Nuclear Magnetic Resonance experiments. Phys Rev 94:630–638. https://doi.org/10.1103/PhysRev.94.630 Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proceedings of National Academy of Sciences of the U.S.A 108: 14813–14818. https://doi.org/10.1073/pnas.1106420108 Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late-onset families. Science 261:921–923. https://doi.org/10.1126/science.8346443 Delaglio F, Grzeseik S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809 Dolai S, Cherakara S, Garai K (2020) Apolipoprotein E4 exhibits intermediates with domain interaction. BBA Proteins and Proteomics 1868:140535. https://doi.org/10.1016/j.bbapap.2020.140535. ) Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH, Agard DA (1994) Human apolipoprotein E. role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem 269:22358–22365. https://doi.org/10.1016/S0021-9258(17)31797-0 Dong LM, Weisgraber KH (1996) Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low-density lipoproteins. J Biol Chem 271:19053–19057. https://doi.org/10.1074/jbc.271.32.19053 Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT Jr (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 92:763–767. https://doi.org/10.1073/pnas.92.3.763 Frieden C, Garai K (2012) Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer’s disease. PNAS USA 109:8913–8918. https://www.pnas.org/content/109/23/8913 Garai K, Verghese PB, Baban B, Holtzman DM, Frieden C (2014) The binding of apolipoprotein E to oligomers and fibrils of amyloid-beta alters the kinetics of amyloid aggregation. Biochemistry 53:6323–6331. https://doi.org/10.1021/bi5008172 Gardner KH, Konrat R, Rosen MK, Kay LE (1996) An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15 N, 13 C-labeled proteins. J Biomol NMR 8:351–356. https://doi.org/10.1007/BF00410333 Ghosh S, Sil TB, Dolai S, Garai K (2019) High-affinity multivalent interactions between apolipoprotein E and the oligomers of amyloid-β. FEBS J 286:4737–4753. https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.14988 Goddard S, Kneller DG (2008) Sparky-NMR assignment and integration software. SPARKY 3. University of California, SanFrancisco Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13 C/15 N-enriched proteins by isotropic mixing of 13 C magnetization. J Magn Reson Ser B 101(1):114–119. https://doi.org/10.1006/jmrb.1993.1019 Hatters DM, Peters-Libeu CA, Weisgraber KH (2006) Apolipoprotein E structure: insights into function. Trends Biochem Sci 31:445–454. https://doi.org/10.1016/j.tibs.2006.06.008 Honda RP, Yamaguchi K, Kuwata K (2014) Acid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment. J Biol Chem 289:30355–30363. https://doi.org/10.1074/jbc.M114.559450 Huang RY, Garai K, Frieden C, Gross ML (2011) Hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry determines the interface and dynamics of apolipoprotein E oligomerization. Biochemistry 50:9273–9282. https://doi.org/10.1021/bi2010027 Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248. https://doi.org/10.1023/A:1022851228405 Kay LE, Gardner (1997) Solution NMR spectroscopy beyond 25 kDa. Curr Opin Struct Biol 7:722–731. https://doi.org/10.1016/s0959-440x(97)80084-x Kay LE, Xu GY, Singer AU et al (1993) A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13 C correlations in H2O samples of proteins. J Magn Reson Ser B 101:333–337. https://doi.org/10.1006/jmrb.1993.1053 Lee W, Tonelli M, Markley JL (2014) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. https://doi.org/10.1093/bioinformatics/btu830 Lehtinen S, Lehtimaki T, Sisto T, Salenius J, Nikkila M, Jokela H, Koivula T, Ebeling F, Ehnholm C (1995) Apolipoprotein E polymorphism, serum lipids myocardial infarction verified coronary artery disease in men and women Atherosclerosis. 114:83–91. https://doi.org/10.1016/0021-9150(94)05469-Y Logan TM, Olejniczak ET, Xu RX, Fesik SW (1993) A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J Biomol NMR 3:225–231. https://doi.org/10.1007/BF00178264 Loria JP, Rance M, Palmer AG III (1999) Transverse-relaxation-optimized (TROSY) gradient-enhanced triple-resonance NMR spectroscopy. J Magn Reson 141:180–184. https://. doi Meiboom S, Gill D (1958) Modified Spin-Echo method for measuring nuclear relaxation times. Rev Sci Instrument 29:688–691. https://doi.org/10.1063/1.1716296 Morrow JA, Hatters DM, Lu B, Hocht P, Oberg KA, Rupp B, Weisgraber KH (2002) Apolipoprotein E4 Forms a Molten Globule. J Biol Chem 277:50380–50385. https://doi.org/10.1074/jbc.M204898200 Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K (2013) The molten globule of beta(2)-microglobulin accumulated at pH 4 and its role in protein folding. J Mol Biol 425:273–291. https://doi.org/10.1016/j.jmb.2012.11.002 Pervushin K, Reik R, Wider G, Kurt W (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structure of very large biological macromolecules in solution. Proceedings of National Academy of Sciences USA 94: 12366–12371. https://doi.org/10.1073/pnas.94.23.12366 Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proceedings of National Academy of Sciences U S A 95: 13585–13590. https://doi.org/10.1073/pnas.95.23.13585 Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Progress Nucl Magn Reson Spectrosc 34(2):93–158. https://doi.org/10.1016/S0079-6565(98)00025-9 Shen Y, Bax A (2010) Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J Biomol NMR 46:199–204. https://doi.org/10.1007/s10858-009-9395-y Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural net- works. J Biomol NMR 56:227–241. https://doi.org/10.1007/ s10858-013-9741-y Sivashanmugam A, Wang J (2009) A unified scheme for initiation and conformational adaptation of human apolipoprotein E N-terminal domain upon lipoprotein binding and receptor binding activity. J Biol Chem 284:14657–14666. https://doi.org/10.1074/jbc.M91012200 Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer’s disease. Annual Rev Neurosci 19:53–77. https://doi.org/10.1146/annurev.ne.19.030196.000413 Vallurupalli P, Bouvignies G, Kay LE (2011) Increasing the Exchange Time-Scale That Can Be Probed by CPMG Relaxation Dispersion NMR. J Phys Chem B 115:14891–14900. https://doi.org/10.1021/jp209610v Weisgraber KH (1990) Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res 31:1503–1511. https://doi.org/10.1016/S0022-2275(20)42621-5 Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45:249–302. https://doi.org/10.1016/s0065-3233(08)60642-7 Williamson MP (2013) Using chemical shift perturbation to characterize ligand binding. Progress Nucl Magn Reson Spectrosc 73:1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001 Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822. https://doi.org/10.1126/science2063194 Wisniewski T, Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Letter 135:235–238. https://doi.org/10.1016/0304-3940(92)90444-C Xu C, Sivashanmugam A, Hoyt D, Wang J (2005) A complete backbone assignment of the apolipoprotein E LDL receptor-binding domain. J Biomol NMR 32:177. https://doi.org/10.1007/s10858-005-6729-2 Yang D, Kay LE (1999) TROSY Triple-Resonance Four-Dimensional NMR Spectroscopy of a 46 ns Tumbling Protein. J Am Chem Soc 121:2571–2575. https://pubs.acs.org/doi/pdf/10.1021/ja984056t Zhang Y, Chen J, Wang J (2008) A complete backbone spectral assignment of lipid-free human apolipoprotein E (apoE). Biomol NMR Assign 2:207–210. https://doi.org/10.1007/s12104-008-9122-8