Hạt nano SrF2:Nd3+ phát quang ở bước sóng 1.3 μm cho hình ảnh in vivo có độ tương phản cao trong cửa sổ sinh học thứ hai

Nano Research - Tập 8 - Trang 649-665 - 2014
Irene Villa1, Anna Vedda1, Irene Xochilt Cantarelli2, Marco Pedroni2, Fabio Piccinelli2, Marco Bettinelli2, Adolfo Speghini2, Marta Quintanilla3, Fiorenzo Vetrone3, Ueslen Rocha4, Carlos Jacinto4, Elisa Carrasco5, Francisco Sanz Rodríguez5, Ángeles Juarranz5, Blanca del Rosal6, Dirk H. Ortgies6, Patricia Haro Gonzalez6, José García Solé6, Daniel Jaque García6
1Department of Materials Science, University of Milano-Bicocca, Milano, Italy
2Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Verona, Italy
3Institut National de la Recherche Scientifique-Energie Materiaux et Telecommunications, Université du Quebec, Varennes, Canada
4Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
5Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
6Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain

Tóm tắt

Các phương pháp mới cho hình ảnh sinh học huỳnh quang in vivo, với độ tương phản cao và sâu trong mô, dựa trên các hạt nano phát ánh sáng hồng ngoại hoạt động trong "cửa sổ sinh học thứ hai" (1.000–1.400 nm). Điều này cho phép thu được những hình ảnh sâu trong mô với độ phân giải cao nhờ vào sự trong suốt tương đối của các mô trong dải quang phổ này. Bên cạnh đó, việc kích thích quang học bằng photon năng lượng thấp (hồng ngoại) cũng dẫn đến sự giảm đáng kể trong sự đóng góp của hiện tượng tự phát quang tới ảnh in vivo. Tuy nhiên, như đã được chứng minh, việc chỉ làm việc trong cửa sổ sinh học này không đảm bảo loại bỏ hoàn toàn hiện tượng tự phát quang vì chế độ ăn uống của mẫu cho thấy huỳnh quang hồng ngoại đáng chú ý kéo dài đến 1.100 nm. Trong công trình này, chúng tôi cho thấy băng phát xạ 1.340 nm của các ion Nd3+ được nhúng trong các hạt nano SrF2 có thể được sử dụng để tạo ra hình ảnh huỳnh quang in vivo không có sự phát quang tự, với độ tương phản cao. Nó cũng được chứng minh rằng việc loại bỏ hoàn toàn sự phát quang hồng ngoại liên quan đến thực phẩm là rất quan trọng cho sự phát triển của các nghiên cứu phân phối sinh học đáng tin cậy.

Từ khóa

#hình ảnh sinh học huỳnh quang #hạt nano SrF2:Nd3+ #cửa sổ sinh học #phát quang hồng ngoại #phân phối sinh học

Tài liệu tham khảo

Srinivas, P. R.; Barker, P.; Srivastava, S. Nanotechnology in early detection of cancer. Lab. Invest. 2002, 82, 657–662. Szelenyi, I. Nanomedicine: Evolutionary and revolutionary developments in the treatment of certain inflammatory diseases. Inflamm. Res. 2012, 61, 1–9. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Nanotechnol. 2007, 2, 37–47. Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288. Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 2007, 120, 2527–2537. Davis, S. S. Biomedical applications of nanotechnology -Implications for drug targeting and gene therapy. Trends Biotechnol. 1997, 15, 217–224. Alivisatos, A. P. Less is more in medicine. Sci. Am. 2001, 285, 66–73. Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 2013, 15, 253–282. Willner, I.; Willner, B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010, 10, 3805–3815. Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev 2002, 54, 631–651. Pankhurst, Q. A.; Thanh, N. T. K.; Jones, S. K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2009, 42, 224001. Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. Rojas-Chapana, J. A.; Giersig, M. Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. J. Nanosci. Nanotechnol. 2006, 6, 316–321. Juzenas, P.; Chen, W.; Sun, Y. P.; Coelho, M. A. N.; Generalov, R.; Generalova, N.; Christensen, I. L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev 2008, 60, 1600–1614. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585. Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132. Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326. Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563. Crisp, M. T.; Kotov, N. A. Preparation of nanoparticle coatings on surfaces of complex geometry. Nano Lett. 2003, 3, 173–177. Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A 2010, 368, 1333–1383. Cañaveras, F.; Madueño, R.; Sevilla, J. M.; Blázquez, M.; Pineda, T. Role of the functionalization of the gold nanoparticle surface on the formation of bioconjugates with human serum albumin. J. Phys. Chem. C 2012, 116, 10430–10437. Saravanakumar, G.; Kim, K.; Park, J. H.; Rhee, K.; Kwon, I. C. Current status of nanoparticle-based imaging agents for early diagnosis of cancer and atherosclerosis. J. Biomed. Nanotechnol. 2009, 5, 20–35. Naccache, R.; Rodriguez, E. M.; Bogdan, N.; Sanz-Rodriguez, F.; de la Cruz, M. D. C. I.; de la Fuente, A. J.; Vetrone, F.; Jaque, D.; Sole, J. G.; Capobianco, J. A. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers 2012, 4, 1067–1105. Ruedas-Rama, M. J.; Walters, J. D.; Orte, A.; Hall, E. A. H. Fluorescent nanoparticles for intracellular sensing: A review. Anal. Chim. Acta 2012, 751, 1–23. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013, 58, R37. Bhaumik, S.; DePuy, J.; Klimash, J. Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging. Lab Animal 2007, 36, 40–43. Taroni, P.; Pifferi, A.; Torricelli, A.; Comelli, D.; Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2003, 2, 124–129. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634. Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711. Venkatachalam, N.; Yamano, T.; Hemmer, E.; Hyodo, H.; Kishimoto, H.; Soga, K. Er3+-doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications. J. Am. Ceram. Soc. 2013, 96, 2759–2765. Hemmer, E.; Venkatachalam, N.; Hyodo, H.; Hattori, A.; Ebina, Y.; Kishimoto, H.; Soga, K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 2013, 5, 11339–11361. Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349. Wang, F.; Liu, X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643. Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 3125–3129. Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780. Maldiney, T.; Viana, B.; Bessiere, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater. 2013, 35, 1852–1858. Basavaraju, N.; Sharma, S.; Bessiere, A.; Viana, B.; Gourier, D.; Priolkar, K. R. Red persistent luminescence in MgGa2O4:Cr3+: A new phosphor for in vivo imaging. J. Phys. D: Appl. Phys. 2013, 46, 375401. Lecointre, A.; Bessiere, A.; Priolkar, K. R.; Gourier, D.; Wallez, G.; Viana, B. Role of manganese in red long-lasting phosphorescence of manganese-doped diopside for in vivo imaging. Mater. Res. Bull. 2013, 48, 1898–1905. le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.-P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9266–9271. Inoue, Y.; Izawa, K.; Kiryu, S.; Tojo, A.; Ohtomo, K. Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol. Imaging 2008, 7, 21–27. Troy, T.; Jekic-McMullen, D.; Sambucetti, L.; Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 2004, 3, 9–23. Krasnovsky, A. A., Jr.; Kovalev, Y. V. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants. Biochemistry (Moscow) 2014, 79, 349–361. Lee, M. R. F.; Scott, M. B.; Veberg-Dahl, A.; Evans, P. R.; Theobald, V. J.; Lundby, F.; Scollan, N. D.; Wold, J.-P. Potential of chlorophyll-rich feed ingredients to improve detection of fecal contamination in the abattoir. J. Food Protect. 2013, 76, 516–522. Welsher, K.; Sherlock, S. P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 8943–8948. Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012, 51, 9818–9821. Li, C.; Zhang, Y.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400. Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639–3646. Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702. Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471. Dong, B.; Li, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Deng, M.; Wang, Q. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509. Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.-C.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969–2977. Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010, 4, 3163–3168. Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Ågren, H.; Prasad, P. N.; Han, G. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280–8287. Stouwdan, J. W.; van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737. Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz, M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E.; et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 2013, 10, 1141–1154. Zhou, J. C.; Yang, Z. L.; Dong, W.; Tang, R. J.; Sun, L. D.; Yan, C. H. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011, 32, 9059–9067. Fadeel, B.; Garcia-Bennett, A. E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010, 62, 362–374. Gautam, A.; van Veggel, F. Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J. Mater. Chem. B 2013, 1, 5186–5200. Boschi, F.; Lo Meo, S.; Rossi, P. L.; Calandrino, R.; Sbarbati, A.; Spinelli, A. E. Optical imaging of alpha emitters: simulations, phantom, and in vivo results. J. Biomed. Opt. 2011, 16, 126011. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199. Rocha, U.; Jacinto da Silva, C.; Ferreira Silva, W.; Guedes, I.; Benayas, A.; Martínez Maestro, L.; Acosta Elias, M.; Bovero, E.; van Veggel, F. C. J. M.; García Solé, J. A.; et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 2013, 7, 1188–1199. Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids; Oxford Science: New York, 1989. Wang, Y.-F.; Liu, G.-Y.; Sun, L.-D.; Xiao, J.-W.; Zhou, J.-C.; Yan, C.-H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206. Balda, R.; Fernandez, J.; Mendioroz, A.; Adam, J. L.; Boulard, B. Temperature-dependent concentration quenching of Nd3+ fluorescence in fluoride glasses. J. Phys.-Condens. Matter 1994, 6, 913–924. Serqueira, E. O.; Dantas, N. O.; Monte, A. F. G.; Bell, M. J. V. Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses. J. Non-Cryst. Solids 2006, 352, 3628–3632. De la Rosa-Cruz, E.; Kumar, G. A.; Diaz-Torres, L. A.; Martinez, A.; Barbosa-Garcia, O. Spectroscopic characterization of Nd3+ ions in barium fluoroborophosphate glasses. Opt. Mater. 2001, 18, 321–329. Tanabe, S. Optical transitions of rare earth ions for amplifiers: How the local structure works in glass. J. Non-Cryst. Solids 1999, 259, 1–9. Jaque, D.; Capmany, J.; Luo, Z. D.; Sole, J. G. Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal. J. Phys.-Condens. Matter 1997, 9, 9715–9729. Dong, N. N.; Pedroni, M.; Piccinelli, F.; Conti, G.; Sbarbati, A.; Ramirez-Hernandez, J. E.; Maestro, L. M.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A.; et al. NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 2011, 5, 8665–8671. Pedroni, M.; Piccinelli, F.; Passuello, T.; Polizzi, S.; Ueda, J.; Haro-Gonzalez, P.; Maestro, L. M.; Jaque, D.; Garcia-Sole, J.; Bettinelli, M.; Speghini, A. Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+/Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth Des. 2013, 13, 4906–4913. Warrier, A. V. R.; Krishnan, R. S. Raman spectrum of strontium fluoride (SrF2). Naturwissenschaften 1964, 51, 8–9. Payne, S. A.; Caird, J. A.; Chase, L. L.; Smith, L. K.; Nielsen, N. D.; Krupke, W. F. Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts. J. Opt. Soc. Am. 1991, 8, 726–740. Krischer, C. Measurement of sound velocities using Bragg diffraction of light and applications to lanthanum fluoride. Appl. Phys. Lett. 1968, 13, 310–311. Kaminskii, A. A.; Osiko, V. V.; Udovenchik, V. T. Room-temperature induced emission of neodymium-doped SrF2·LaF3 crystals. J. Appl. Spectrosc. 1967, 6, 23–25. Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323. Al Faraj, A.; Fauvelle, F.; Luciani, N.; Lacroix, G.; Levy, M.; Cremillieux, Y.; Canet-Soulas, E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. Int. J. Nanomedicine 2011, 6, 351–361. Liao, W. Y.; Li, H. J.; Chang, M. Y.; Tang, A. C. L.; Hoffman, A. S.; Hsieh, P. C. H. Comprehensive characterizations of nanoparticle biodistribution following systemic injection in mice. Nanoscale 2013, 5, 11079–11086. Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schaeffler, M.; Takenaka, S.; Moeller, W.; Schmid, G.; Simon, U.; et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416. Xiao, K.; Li, Y.; Luo, J.; Lee, J. S.; Xiao, W.; Gonik, A. M.; Agarwal, R. G.; Lam, K. S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435–3446. Balogh, L.; Nigavekar, S. S.; Nair, B. M.; Lesniak, W.; Zhang, C.; Sung, L. Y.; Kariapper, M. S. T.; El-Jawahri, A.; Llanes, M.; Bolton, B.; et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 2007, 3, 281–296. Kumar, R.; Roy, I.; Ohulchanskky, T. Y.; Vathy, L. A.; Bergey, E. J.; Sajjad, M.; Prasad, P. N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010, 4, 699–708. Yoshio, T.; Jin, M.; Minfang, Z.; Mei, Y.; Iwao, W.; Sumio, I.; Hiroshi, I.; Masako, Y. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 2011, 22, 265106. Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M.; Liu, P. X.; Zhang, L. A.; Fan, F. Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771–781.