$$v_c$$-Noetherian domains and Krull domains

Gyu Whan Chang1
1Department of Mathematics Education, Incheon National University, Incheon, 22012, South Korea

Tóm tắt

AbstractLet D be an integrally closed domain, $$\{V_{\alpha }\}$$ { V α } be the set of t-linked valuation overrings of D, and $$v_c$$ v c be the star operation on D defined by $$I^{v_c} = \bigcap _{\alpha } IV_{\alpha }$$ I v c = α I V α for all nonzero fractional ideals I of D. In this paper, among other things, we prove that D is a $$v_c$$ v c -Noetherian domain if and only if D is a Krull domain, if and only if $$v_c = v$$ v c = v and every prime t-ideal of D is a maximal t-ideal. As a corollary, we have that if D is one-dimensional, then $$v_c = v$$ v c = v if and only if D is a Dedekind domain.

Từ khóa


Tài liệu tham khảo

Barucci, V.: On a class of Mori domains. Commun. Algebra 11, 1989–2001 (1983)

Chang, G.W.: $$*$$ -Noetherian domains and the ring $$D[X]_{N_*}$$. J. Algebra 297, 216–233 (2006)

Chang, G.W.: Prüfer $$*$$-multiplication domains, Nagata rings, and Kronecker function rings. J. Algebra 319, 309–319 (2008)

El Baghdadi, S.; Gabelli, S.: $$w$$-divisorial domains. J. Algebra 285, 335–355 (2005)

Fontana, M.; Jara, P.; Santos, E.: Prüfer $$*$$-multiplication domains and semistar operations. J. Algebra Appl. 2, 1–30 (2003)

Fontana, M.; Picozza, G.: On some classes of integral domains defined by Krull’s ab operations. J. Algebra 341, 179–197 (2011)

Fontana, M.; Zafrullah, M.: On $$v$$-domains: a survey. In: Fontana, M., Kabbaj, S., Olberding, B., Swanson, I. (eds.) Commutative Algebra: Noetherian and Non-Noetherian Perspectives, pp. 145–180. Springer, New York (2011)

Gilmer, R.: Multiplicative Ideal Theory, Queen’s Papers. In: Pure Appl. Math., vol. 90, Queen’s University, Kingston (1992)

Heinzer, W.J.: Integral domains in which each nonzero ideal is divisorial. Matematika 15, 164–170 (1968)

Houston, E.G.; Zafrullah, M.: Integral domains in which each $$t$$-ideal is divisorial. Mich. Math. J. 35, 291–300 (1988)

Hwang, C.J.; Chang, G.W.: Prüfer $$v$$ -multiplication domains in which each $$t$$ -ideal is divisorial. Bull. Korean Math. Soc. 35, 259–268 (1998)

Kang, B.G.: Prüfer $$v$$-multiplication domains and the ring $$R[X]_{N_v}$$. J. Algebra 123, 151–170 (1989)

Mimouni, A.: TW-domains and Strong Mori domains. J. Pure Appl. Algebra 177, 79–93 (2003)

Mimouni, A.: Integral domains in which each ideal is a $$w$$-ideal. Commun. Algebra 33, 1345–1355 (2005)

Picozza, G.; Tartarone, F.: When the semistar operation is the identity. Commun. Algebra 36, 1954–1975 (2008)

Wang, F.; McCaslandb, R.L.: On Strong Mori domains. J. Pure Appl. Algebra 135, 155–165 (1999)