$$v_c$$-Noetherian domains and Krull domains
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chang, G.W.: Prüfer $$*$$-multiplication domains, Nagata rings, and Kronecker function rings. J. Algebra 319, 309–319 (2008)
Fontana, M.; Jara, P.; Santos, E.: Prüfer $$*$$-multiplication domains and semistar operations. J. Algebra Appl. 2, 1–30 (2003)
Fontana, M.; Picozza, G.: On some classes of integral domains defined by Krull’s ab operations. J. Algebra 341, 179–197 (2011)
Fontana, M.; Zafrullah, M.: On $$v$$-domains: a survey. In: Fontana, M., Kabbaj, S., Olberding, B., Swanson, I. (eds.) Commutative Algebra: Noetherian and Non-Noetherian Perspectives, pp. 145–180. Springer, New York (2011)
Gilmer, R.: Multiplicative Ideal Theory, Queen’s Papers. In: Pure Appl. Math., vol. 90, Queen’s University, Kingston (1992)
Heinzer, W.J.: Integral domains in which each nonzero ideal is divisorial. Matematika 15, 164–170 (1968)
Houston, E.G.; Zafrullah, M.: Integral domains in which each $$t$$-ideal is divisorial. Mich. Math. J. 35, 291–300 (1988)
Hwang, C.J.; Chang, G.W.: Prüfer $$v$$ -multiplication domains in which each $$t$$ -ideal is divisorial. Bull. Korean Math. Soc. 35, 259–268 (1998)
Kang, B.G.: Prüfer $$v$$-multiplication domains and the ring $$R[X]_{N_v}$$. J. Algebra 123, 151–170 (1989)
Mimouni, A.: Integral domains in which each ideal is a $$w$$-ideal. Commun. Algebra 33, 1345–1355 (2005)
Picozza, G.; Tartarone, F.: When the semistar operation is the identity. Commun. Algebra 36, 1954–1975 (2008)