$${\tt surveillance}$$ : An R package for the monitoring of infectious diseases

Michael Höhle1
1Department of Statistics, University of Munich, Ludwigstr. 33, Munich, 80539, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altmann D (2003) The surveillance system of the Robert Koch Institute, Germany (Personal Communication)

Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis, vol 151. Springer Lectures Notes in Statistics. Springer, Heidelberg

Ethelberg S, Mølbak K (2007) GastroEnteRitis Monitor, Statens Serum Institut, Denmark, http://germ.dk [Online; accessed 27-March-2007]

Farrington C, Andrews N (2003) Outbreak detection: application to infectious disease surveillance. In: Brookmeyer R, Stroup D (eds). Monitoring the health of populations, chapter 8. Oxford University Press, NY USA, pp 203–231

Farrington C, Andrews N, Beale A, Catchpole M (1996) A statistical algorithm for the early detection of outbreaks of infectious disease. J R Stat Soc Ser A 159:547–563

Held L, Hofmann M, Höhle M, Schmid V (2006) A two component model for counts of infectious diseases. Biostatistics 7:422–437

Held L, Höhle M, Hofmann M (2005) A statistical framework for the analysis of multivariate infectious disease surveillance data. Stat Modell 5:187–199

Höhle M (2006) Poisson regression charts for the monitoring of surveillance time series. Technical report, Department of Statistics, University of Munich. SFB Discussion Paper 500

Hutwagner L, Browne T, Seeman G, Fleischhauer A (2005) Comparing abberation detection methods with simulated data. Emerg Infect Dis 11:314–316

Kenett R, Pollak M (1983) On sequential detection of a shift in the probability of a rare event. J Am Stat Assoc 78(382):389–395

Knoth S (2004) spc: Statistical Process Control. R package version 0.2

Lawson A, Kleinman K (eds) (2005) Spatial and syndromic surveillance for public health. Wiley, London

Leisch F (2003) Sweave, Part I: Mixing R and LaTeX. R Newsletter 2(3):28–31

Lewin-Koh NJ, Bivand R, contributions by Edzer Pebesma J, Hausmann P, Rubio VG, Jagger T, Luque SP (2006) maptools: Tools for reading and handling spatial objects. R package version 0.6-5

Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13

Pierce D, Schafer D (1986) Residuals in generalized linear models. J Am Stat Assoc 81(396):977–986

R Development Core Team (2006) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0

Riebler A (2004) Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten. Department of Statistics, University of Munich, Bachelor’s thesis

Robert Koch Institute (2004) SurvStat@RKI. http://www3.rki.de/SurvStat (Date of query: September 2004)

Robert Koch Institute (2006) Epidemiologisches Bulletin 33. Available from http://www.rki.de

Rogerson P, Yamada I (2004) Approaches to syndromic surveillance when data consist of small regional counts. Morb Mortal Wkly Rep 53:79–85

Rossi G, Lampugnani L, Marchi M (1999) An approximate CUSUM procedure for surveillance of health events. Stat Med 18:2111–2122

Sonesson C, Bock D (2003) A review and discussion of prospective statistical surveillance in public health. J R Stat Soc Ser A 166:5–12

Sonesson C, Frisén M (2005) Multivariate surveillance. In: Lawson A, Kleinman K (eds). Spatial and syndromic surveillance for public health, chapter 9. Wiley, London, pp 153–166

Stroup D, Williamson G, Herndon J, Karon J (1989) Detection of aberrations in the occurrence of notifiable diseases surveillance data. Stat Med 8:323–329

Widdowson M-A, Bosman A, van Straten E, Tinga M, Chaves S, van Eerden L, van Pelt W (2003) Automated, Laboratory-based system using the Internet for disease outbreak detection, the Netherlands. Emerg Infect Dis 9(9):1046–1052