<sup>13</sup>C MRS studies of neuroenergetics and neurotransmitter cycling in humans

NMR in Biomedicine - Tập 24 Số 8 - Trang 943-957 - 2011
Douglas L. Rothman1,2, Henk M. De Feyter2, Robin A. de Graaf1,2, Graeme F. Mason2,3, Kevin L. Behar3
1Department of Biomedical Engineering, Yale University, New Haven, CT, USA
2Department of Diagnostic Radiology, Magnetic Resonance Research Center Yale University School of Medicine New Haven CT USA
3Department of Psychiatry, Magnetic Resonance Research Center Yale University School of Medicine New Haven CT USA

Tóm tắt

In the last 25 years, 13 C MRS has been established as the only noninvasive method for the measurement of glutamate neurotransmission and cell‐specific neuroenergetics. Although technically and experimentally challenging, 13 C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the energy cost of brain function, the high neuronal activity in the resting brain state and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this article, the current state of 13 C MRS as it is applied to the study of neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research and the technical status of the method. Results from in vivo 13 C MRS studies in animals are discussed from the standpoint of the validation of MRS measurements of neuroenergetics and neurotransmitter cycling, and where they have helped to identify key questions to address in human research. Controversies concerning the relationship between neuroenergetics and neurotransmitter cycling and factors having an impact on the accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different 13C‐labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases investigated using 13 C MRS. Future technological developments are discussed that will help to overcome the limitations of 13 C MRS, with special attention given to recent developments in hyperpolarized 13 C MRS. Copyright © 2011 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

Shephard GM, 1994, The Synaptic Organization of the Brain

10.1016/S0896-6273(00)80086-0

10.1016/S0959-4388(99)80043-9

Hertz L, 2007, Dienel GA, Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab., 27, 219

10.1046/j.1471-4159.2001.00074.x

10.1111/j.1471-4159.1983.tb00849.x

10.1146/annurev.physiol.65.092101.142131

10.1016/S0730-725X(02)00510-6

10.1038/sj.jcbfm.9600145

10.1073/pnas.0806516106

10.1038/sj.jcbfm.9600263

Van den Berg CJ, 1969, Compartmentation of glutamate metabolism in brain, Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem. J., 113, 281

Hertz L., 1979, Functional interactions between neurons and astrocytes I, Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol., 13, 277

10.1016/0166-2236(90)90178-D

10.1016/0165-6147(90)90129-V

10.1046/j.1471-4159.1994.63041377.x

10.1152/physrev.1987.67.2.440

10.1073/pnas.94.6.2699

10.1046/j.1471-4159.2001.00156.x

10.1523/JNEUROSCI.3564-04.2004

10.1159/000017341

10.1073/pnas.0501703102

Kanamori K, 2003, 13C enrichment of extracellular neurotransmitter glutamate in rat brain – combined mass spectrometry and NMR studies of neurotransmitter turnover and uptake into glia in vivo, Cell Mol. Biol. (Noisy‐le‐grand), 49, 819

Gruetter R, 2001, Seaquist ER, Ugurbil K. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol. Endocrinol. Metab., 281, E100

10.1523/JNEUROSCI.22-05-01523.2002

10.1111/j.1471-4159.2006.04200.x

10.1073/pnas.96.14.8235

Siesjo BK, 1978, Brain Energy Metabolism

10.1073/pnas.95.1.316

10.1126/science.283.5401.496

10.1073/pnas.101129298

10.3389/neuro.14.004.2009

10.1152/jn.90377.2008

10.1016/j.bandc.2009.12.008

10.1097/00004647-200110000-00001

10.1038/sj.jcbfm.9600490

10.1097/00004647-199711000-00012

10.1002/jnr.20311

Serres S, 2008, Franconi J‐M, Merle M. Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J. Cereb. Blood Flow Metab., 28, 712

10.1038/jcbfm.2010.2

10.1038/jcbfm.2009.197

10.1016/j.neuint.2007.09.015

10.1038/jcbfm.2009.232

10.1002/jnr.21269

10.1038/jcbfm.1995.2

10.1038/jcbfm.2008.170

10.1038/jcbfm.2008.102

10.1002/jnr.21444

10.1002/mrm.1910030611

10.1038/jcbfm.1990.32

10.1073/pnas.82.6.1633

10.1002/mrm.1910290613

10.1021/bi00240a002

10.1073/pnas.89.3.1109

10.1073/pnas.89.20.9603

10.1097/00004647-199911000-00002

10.1002/1522-2594(200011)44:5<673::AID-MRM3>3.0.CO;2-L

10.1159/000017334

10.1111/j.1471-4159.2009.06428.x

10.1073/pnas.95.20.11993

10.1523/JNEUROSCI.4366-09.2009

10.1172/JCI105650

10.1038/jcbfm.2009.35

10.1097/01.WCB.0000063991.19746.11

10.1097/00004647-199605000-00009

10.1007/BF00175064

10.1038/jcbfm.1984.30

10.1097/00004647-200105000-00002

Gruetter R, 1998, Seaquist ER, Steady‐state cerebral glucose concentrations and transport in the human brain. J. Neurochem., 70, 397

10.1038/sj.jcbfm.9600521

10.1042/bj2660133

Cerdán S, 1990, Cerebral metabolism of [1,2‐13C2]acetate as detected by in vivo and in vitro 13C NMR, J. Biol. Chem., 265, 12 916, 10.1016/S0021-9258(19)38247-X

10.1002/nbm.1940020516

Waniewski RA, 1998, Preferential utilization of acetate by astrocytes is attributable to transport, J. Neurosci., 18, 5225, 10.1523/JNEUROSCI.18-14-05225.1998

10.1002/nbm.725

10.2337/diabetes.55.04.06.db05-1325

10.1097/00004647-200207000-00014

10.1523/JNEUROSCI.2040-10.2010

10.1002/9780470512968

10.1126/science.3260686

10.1002/jnr.10079

10.1038/sj.jcbfm.9600401

10.1073/pnas.88.13.5829

10.1002/1522-2594(200103)45:3<349::AID-MRM1045>3.0.CO;2-8

10.1073/pnas.96.16.9403

10.1002/(SICI)1522-2594(199906)41:6<1152::AID-MRM11>3.0.CO;2-T

10.1007/978-1-4899-0056-2_22

10.1016/j.neurobiolaging.2007.07.005

10.1001/archpsyc.61.5.450

10.1001/archpsyc.61.7.705

10.1097/01.rli.0000073446.43445.20

10.1001/archpsyc.59.9.851

10.1001/archpsyc.58.6.556

10.1001/archpsyc.64.2.193

10.1212/WNL.58.3.368

10.1111/j.1528-1157.1999.tb00741.x

Petroff OA, 2000, Proton MRS: GABA and glutamate, Adv. Neurol, 83, 261

10.1002/ana.10697

10.1148/radiology.193.2.7972763

10.1007/s11307-007-0087-2

10.1002/nbm.852

10.1002/mrm.1910160310

10.1002/mrm.1910210215

Petroff OA, 1992, Spectroscopic imaging of stroke in humans, histopathology correlates of spectral changes. Neurology, 42, 1349

Terpstra M, 1998, Lactate turnover in rat glioma measured by in vivo nuclear magnetic resonance spectroscopy, Cancer Res., 58, 5083

10.1016/j.mri.2010.03.006

10.1159/000111350

10.1176/ajp.156.6.952

10.1111/j.1471-4159.1989.tb02517.x

10.1046/j.1471-4159.1997.68031209.x

10.1007/978-1-4612-4506-3_13

10.1007/978-1-4612-4506-3_12

10.1002/mrm.1131

10.1148/radiol.2523081878

10.1038/nature05292

10.1016/j.neurobiolaging.2007.05.019

10.1111/j.1749-6632.1999.tb07823.x

10.1007/s10334-003-0004-x

10.1056/NEJMra031354

Cryer PE, 1994, Banting Lecture, Hypoglycemia: the limiting factor in the management of IDDM. Diabetes, 43, 1378

10.2337/db09-0226

10.1111/j.1528-1167.2008.01508.x

10.1002/ana.20380

10.1046/j.1528-1157.2002.38901.x

10.1016/S0140-6736(03)15166-5

10.1002/nbm.679

10.1073/pnas.0405065101

10.1002/(SICI)1522-2594(199906)41:6<1077::AID-MRM1>3.0.CO;2-#

10.1039/c002309b

10.1016/j.jmr.2010.07.006

10.1016/j.jmr.2007.01.017

10.1002/mrm.20941

10.1002/mrm.22164

10.1002/mrm.21141

10.1002/mrm.20507

10.1002/jmri.20041

10.1006/jmre.1997.1113

10.1002/mrm.20745

10.1002/mrm.21148

10.1038/jcbfm.2009.261

10.1002/mrm.22044

10.1002/nbm.1524

10.1016/j.ymben.2003.10.003

10.1002/mrm.1158

10.1016/S1385-299X(02)00217-9

10.1016/j.jneumeth.2009.10.025

10.1016/j.jmr.2010.09.010

10.1002/jnr.10053

10.1016/j.metabol.2009.07.012

10.1097/01.WCB.0000126234.16188.71

10.1097/01.WCB.0000040945.89393.46

10.1111/j.1471-4159.2010.06684.x

10.1016/j.neuroscience.2005.06.067