M -tensors and nonsingularM -tensors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berman, 1994
Chang, 2008, Perron–Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507, 10.4310/CMS.2008.v6.n2.a12
Chang, 2011, Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. Appl., 32, 806, 10.1137/100807120
Friedland, 2013, Perron–Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438, 738, 10.1016/j.laa.2011.02.042
Golub, 2013
Hu, 2013, Strictly nonnegative tensors and nonnegative tensor partition, Sci. China Math.
Hu, 2013, The Laplacian of a uniform hypergraph, J. Comb. Optim.
Hu, 2013, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues, Linear Algebra Appl., 439, 2980, 10.1016/j.laa.2013.08.028
Hu
Kolda, 2011, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32, 1095, 10.1137/100801482
Ng, 2009, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31, 1090, 10.1137/09074838X
Qi, 2005, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302, 10.1016/j.jsc.2005.05.007
Qi, 2013, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228, 10.1016/j.laa.2013.03.015
Qi, 2013, H+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci.
Yang, 2011, Further results for Perron–Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 1236, 10.1137/100813671
Yang, 2010, Further results for Perron–Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31, 2517, 10.1137/090778766
Zhang