$${\mathcal {C}}_1$$ -diagrams of slim rectangular semimodular lattices permit quotient diagrams

Czédli, Gábor1
1Bolyai Institute, University of Szeged, Szeged, Hungary

Tóm tắt

Slim semimodular lattices (for short, SPS lattices) and slim rectangular lattices (for short, SR lattices) were introduced by Grätzer and Knapp (Acta Sci Math (Szeged) 73:445–462, 2007; 75:29–48, 2009). These lattices are necessarily finite and planar, and they have been studied in more then four dozen papers since 2007. They are best understood with the help of their $${\mathcal {C}}_1$$ -diagrams, introduced by the author in 2017. For a diagram F of a finite lattice L and a congruence $$\alpha $$ of L, we define the “quotient diagram” $$F/\alpha $$ by taking the maximal elements of the $$\alpha $$ -blocks and preserving their geometric positions. While $$F/\alpha $$ is not even a Hasse diagram in general, we prove that whenever L is an SR lattice and F is a $${\mathcal {C}}_1$$ -diagram of L, then $$F/\alpha $$ is a $${\mathcal {C}}_1$$ -diagram of $$L/\alpha $$ , which is an SR lattice or a chain. The class of lattices isomorphic to the congruence lattices of SPS lattices is closed under taking filters. We prove that this class is closed under two more constructions, which are inverses of taking filters in some sense; one of the two respective proofs relies on an inverse of the quotient diagram construction.

Tài liệu tham khảo

Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in Mathematics, vol. 78, Springer, New York (1981), 2012 update of the Millennium Edition. ISBN: 0-387-90578-2 citation_journal_title=Algebra Universalis; citation_title=Patch extensions and trajectory colorings of slim rectangular lattices; citation_author=G Czédli; citation_volume=72; citation_publication_date=2014; citation_pages=125-154; citation_doi=10.1007/s00012-014-0294-z; citation_id=CR2 citation_journal_title=Algebra Universalis; citation_title=A note on congruence lattices of slim semimodular lattices; citation_author=G Czédli; citation_volume=72; citation_issue=3; citation_publication_date=2014; citation_pages=225-230; citation_doi=10.1007/s00012-014-0286-z; citation_id=CR3 citation_journal_title=Algebra Universalis; citation_title=Diagrams and rectangular extensions of planar semimodular lattices; citation_author=G Czédli; citation_volume=77; citation_publication_date=2017; citation_pages=443-498; citation_doi=10.1007/s00012-017-0437-0; citation_id=CR4 citation_journal_title=Acta Sci. Math. (Szeged); citation_title=Lamps in slim rectangular planar semimodular lattices; citation_author=G Czédli; citation_volume=87; citation_publication_date=2021; citation_pages=381-413; citation_doi=10.14232/actasm-021-865-y; citation_id=CR5 Czédli, G.: Infinitely many new properties of the congruence lattices of slim semimodular lattices. Acta. Sci. Math. (2023). https://doi.org/10.1007/s44146-023-00069-8 89, 319–337 (2023) citation_journal_title=Acta Sci. Math. (Szeged); citation_title=A property of meets in slim semimodular lattices and its application to retracts; citation_author=G Czédli; citation_volume=88; citation_publication_date=2022; citation_pages=595-610; citation_doi=10.1007/s44146-022-00040-z; citation_id=CR7 Czédli, G.: Slim patch lattices as absolute retracts and maximal lattices. arXiv:2105.12868 Czédli, G.: Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices. arXiv:2301.00401 , Math. Bohemica, to appear citation_journal_title=Categ. Gener. Algebraic Struct. Appl.; citation_title=A new property of congruence lattices of slim, planar, semimodular lattices; citation_author=G Czédli, G Grätzer; citation_volume=16; citation_publication_date=2022; citation_pages=1-28; citation_id=CR10 citation_journal_title=Algebra Universalis; citation_title=Congruence structure of planar semimodular lattices: the general swing lemma; citation_author=G Czédli, G Grätzer, H Lakser; citation_volume=79; citation_publication_date=2018; citation_pages=40; citation_doi=10.1007/s00012-018-0483-2; citation_id=CR11 citation_journal_title=Categ. Gener. Algebraic Struct. Appl.; citation_title=A convex combinatorial property of compact sets in the plane and its roots in lattice theory; citation_author=G Czédli, Á Kurusa; citation_volume=11; citation_publication_date=2019; citation_pages=57-92; citation_id=CR12 citation_journal_title=Acta Sci. Math. (Szeged); citation_title=Swing lattice game and a direct proof of the swing lemma for planar semimodular lattices; citation_author=G Czédli, G Makay; citation_volume=83; citation_publication_date=2017; citation_pages=13-29; citation_doi=10.14232/actasm-016-036-3; citation_id=CR13 citation_journal_title=Acta Math. Hungar.; citation_title=How to derive finite semimodular lattices from distributive lattices?; citation_author=G Czédli, ET Schmidt; citation_volume=121; citation_publication_date=2008; citation_pages=277-282; citation_doi=10.1007/s10474-008-7199-2; citation_id=CR14 citation_journal_title=Algebra Universalis; citation_title=The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices; citation_author=G Czédli, ET Schmidt; citation_volume=66; citation_publication_date=2011; citation_pages=69-79; citation_doi=10.1007/s00012-011-0144-1; citation_id=CR15 citation_journal_title=Order; citation_title=Slim semimodular lattices. I. A visual approach; citation_author=G Czédli, ET Schmidt; citation_volume=29; citation_publication_date=2012; citation_pages=481-497; citation_doi=10.1007/s11083-011-9215-3; citation_id=CR16 citation_journal_title=Order; citation_title=Slim semimodular lattices. II. A description by patchwork systems; citation_author=G Czédli, ET Schmidt; citation_volume=30; citation_publication_date=2013; citation_pages=689-721; citation_doi=10.1007/s11083-012-9271-3; citation_id=CR17 citation_title=Lattice Theory: Foundation; citation_publication_date=2011; citation_id=CR18; citation_author=G Grätzer; citation_publisher=Birkhäuser citation_journal_title=Acta Sci. Math. (Szeged); citation_title=Congruences in slim, planar, semimodular lattices: the Swing Lemma; citation_author=G Grätzer; citation_volume=81; citation_publication_date=2015; citation_pages=381-397; citation_doi=10.14232/actasm-015-757-1; citation_id=CR19 Grätzer, G.: The Congruences of a Finite Lattice, A Proof-by-Picture Approach, 2nd edn. Birkhäuser (2016). xxxii+347. Part I is accessible at https://www.researchgate.net/publication/299594715 citation_journal_title=Algebra Universalis; citation_title=Congruences of fork extensions of slim, planar, semimodular lattices; citation_author=G Grätzer; citation_volume=76; citation_publication_date=2016; citation_pages=139-154; citation_doi=10.1007/s00012-016-0394-z; citation_id=CR21 Grätzer, G.: Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices. Algebra Universalis 81, Paper No. 15 (2020) citation_journal_title=Acta Sci. Math. (Szeged); citation_title=Notes on planar semimodular lattices. I. Construction; citation_author=G Grätzer, E Knapp; citation_volume=73; citation_publication_date=2007; citation_pages=445-462; citation_id=CR23 citation_journal_title=Acta Sci. Math. (Szeged); citation_title=Notes on planar semimodular lattices. III. Rectangular lattices; citation_author=G Grätzer, E Knapp; citation_volume=75; citation_publication_date=2009; citation_pages=29-48; citation_id=CR24 citation_journal_title=Math. Ann.; citation_title=Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen; citation_author=O Hölder; citation_volume=34; citation_publication_date=1889; citation_pages=26-56; citation_doi=10.1007/BF01446791; citation_id=CR25 citation_title=Traité des substitutions et des équations algebraique; citation_publication_date=1870; citation_id=CR26; citation_author=C Jordan; citation_publisher=Gauthier-Villars citation_journal_title=Can. J. Math.; citation_title=Planar lattices; citation_author=D Kelly, I Rival; citation_volume=27; citation_publication_date=1975; citation_pages=636-665; citation_doi=10.4153/CJM-1975-074-0; citation_id=CR27