unc-53controls longitudinal migration inC. elegans

Development (Cambridge) - Tập 129 Số 14 - Trang 3367-3379 - 2002
Eve G. Stringham1,2,3, Nathalie Pujol1,4,5, Joël Vandekerckhove1, Thierry Bogaert1,5,6
1Department of Biochemistry, Ghent University – Flanders Interuniversity Institute for Biotechnology (VIB09), Gent 9000, Belgium
2Present address: Department of Biology, Trinity Western University, 7600 Glover Road, Langley, BC V2Y 1Y1, Canada
3These two authors contributed equally to this work.
4Present address: Centre d’Immunologie de Marseille-Luminy, CNRS/INSERM/Université de la Méditerranée, Luminy Case 906, 13288 Marseille Cedex 9, France
5Present address: Devgen N.V., Technologiepark 9, Blok DF1.60.14, 9052 Zwijnaarde, Belgium
6Singapore Institute of Molecular and Cell Biology, Kent Ridge Crescent, Singapore, and Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, UK

Tóm tắt

Cell migration and outgrowth are thought to be based on analogous mechanisms that require repeated cycles of process extension, reading and integration of multiple directional signals, followed by stabilisation in a preferred direction, and renewed extension. We have characterised a C. elegans gene, unc-53, that appears to act cell autonomously in the migration and outgrowth of muscles, axons and excretory canals. Abrogation of unc-53 function disrupts anteroposterior outgrowth in those cells that normally express the gene. Conversely, overexpression of unc-53 in bodywall muscles leads to exaggerated outgrowth. UNC-53 is a novel protein conserved in vertebrates that contains putative SH3- and actin-binding sites. unc-53 interacts genetically with sem-5 and we demonstrated a direct interaction in vitro between UNC-53 and the SH2-SH3 adaptor protein SEM-5/GRB2. Thus, unc-53 is involved in longitudinal navigation and might act by linking extracellular guidance cues to the intracellular cytoskeleton.

Từ khóa


Tài liệu tham khảo

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidmand, J. G., Smith, J. A. and Struhl, K. (1993). Current Protocols in Molecular Biology. New York: J. Wiley & Sons.

Bentley, D. and O’Connor, T. P. (1994). Cytoskeletal events in growth cone steering. Curr. Opin. Neurobiol.4, 43-48.

Branda, C. S. and Stern, M. J. (2000). Mechanisms controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Dev. Biol.226, 137-151.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics77, 71-94.

Carugo, K. D., Banuelos, S. and Saraste, M. (1997). Crystal structure of a calponin homology domain. Nat. Struct. Biol.4, 175-179.

Chen, E. B., Branda, C. S. and Stern, M. J. (1997). Genetic enhancers of sem-5 define components of the gonad-independent guidance mechanism controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Dev. Biol.182, 88-100.

Chisholm, A. and Tessier-Lavigne, M. (1999). Conservation and divergence of axon guidance mechanisms. Curr. Opin. Neurobiol.9, 603-615.

Clark, S. G., Stern, M. J. and Horvitz, H. R. (1992). C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature356, 340-344.

Confalonieri, F. and Duguet, M. (1995). A 200-amino acid ATPase module in search of a basic fuction. BioEssays17, 639-650.

Goh, P. Y. and Bogaert, T. (1991). Positioning and maintenance of embryonic body wall muscle attachments in C. elegans requires the mup-1 gene. Development111, 667-681.

Hao, J. C., Yu, T. W., Fujisawa, K., Culotti, J. G., Gengyo-Ando, K., Mitani, S., Moulder, G., Barstead, R., Tessier-Lavigne, M. and Bargmann, C. I. (2001). C. elegans Slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo Receptor. Neuron32, 25-38.

Hedgecock, E. M., Culotti, J. G., Hall, D. H. and Stern, B. D. (1987). Genetics of cell and axon migrations in Caenorhabditis elegans. Development100, 365-382.

Hedgecock, E. M. and Norris, C. R. (1997). Netrins evoke mixed reactions in motile cells. Trends Genet.13, 251-253.

Hekimi, S. and Kershaw, D. (1993). Axonal guidance defects in a Caenorhabditis elegans mutant reveal cell- extrinsic determinants of neuronal morphology. J. Neurosci.13, 4254-4271.

Hodgkin, J. (1983). Male phenoypes and mating efficiency in Caenorhabditis elegans. Genetics103, 43-64.

Krause, M. and Hirsh, D. (1987). A trans-spliced leader sequence on actin mRNA in C. elegans. Cell49, 753-761.

Li, W., Herman, R. K. and Shaw, J. E. (1992). Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics132, 675-689.

Lin, M. Z. and Greenberg, M. E. (2000). Orchestral maneuvers in the axon: trio and the control of axon guidance. Cell101, 239-242.

Lowenstein, E. J., Daly, R. J., Batzer, A. G., Li, W., Margolis, B., Lammers, R., Ullrich, A., Skolnik, E. Y., Bar-Sagi, D. and Schlessinger, J. (1992). The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell70, 431-442.

Maes, T., Barcelo, A. and Buesa, C. (2002). Neuron NAVs: a human gene family with homology to unc-53, a cell guidance gene of C. elegans. Genomics (in press).

McIntire, S. L., Garriga, G., White, J., Jacobson, D. and Horvitz, H. R. (1992). Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron8, 307-322.

McLeod, M., Stein, M. and Beach, D. (1987). The product of the mei3+ gene, expressed under control of the mating- type locus, induces meiosis and sporulation in fission yeast. EMBO J.6, 729-736.

Mello, C. C., Kramer, J. M., Stinchcomb, D. and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J.10, 3959-3970.

Merrill, R. A., Plum, L. A., Kaiser, M. E. and Clagett-Dame, M. (2002). A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc. Natl. Acad. Sci. USA99, 3422-3427.

Moerman, D. G., Hutter, H., Mullen, G. P. and Schnabel, R. (1996). Cell autonomous expression of perlecan and plasticity of cell shape in embryonic muscle of Caenorhabditis elegans. Dev. Biol.173, 228-242.

Nelson, F. K., Albert, P. S. and Riddle, D. L. (1983). Fine structure of the Caenorhabditis elegans secretory-excretory system. J. Ultrastruct. Res.82, 156-171.

Ogura, K., Shirakawa, M., Barnes, T. M., Hekimi, S. and Ohshima, Y. (1997). The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC- 51. Genes Dev.11, 1801-1811.

Okkema, P. G., Harrison, S. W., Plunger, V., Aryana, A. and Fire, A. (1993). Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics135, 385-404.

Otsuka, A. J., Franco, R., Yang, B., Shim, K. H., Tang, L. Z., Zhang, Y. Y., Boontrakulpoontawee, P., Jeyaprakash, A., Hedgecock, E., Wheaton, V. I. et al. ( 1995). An ankyrin-related gene (unc-44) is necessary for proper axonal guidance in Caenorhabditis elegans. J. Cell Biol.129, 1081-1092.

Pujol, N., Torregrossa, P., Ewbank, J. J. and Brunet, J. F. (2000). The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in C. elegans. Development127, 3361-3371.

Siddiqui, S. S. (1990). Mutations affecting axonal growth and guidance of motor neurons and mechanosensory neurons in the nematode Caenorhabditis elegans. Neurosci. Res.13, S171-S190.

Stern, M. J., Marengere, L. E., Daly, R. J., Lowenstein, E. J., Kokel, M., Batzer, A., Olivier, P., Pawson, T. and Schlessinger, J. (1993). The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5. Mol. Biol. Cell4, 1175-1188.

Steven, R., Kubiseski, T. J., Zheng, H., Kulkarni, S., Mancillas, J., Ruiz Morales, A., Hogue, C. W., Pawson, T. and Culotti, J. (1998). UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell92, 785-795.

Stradal, T., Kranewitter, W., Winder, S. J. and Gimona, M. (1998). CH domains revisited. FEBS Lett.431, 134-137.

Sulston, J. E. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol.56, 110-156.

Sulston, J. E. and Horvitz, H. R. (1981). Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev. Biol.82, 41-55.

Sulston, J. E., Albertson, D. G. and Thomson, J. N. (1980). The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol. 78, 542-576.

Tessier-Lavigne, M. and Goodman, C. S. (1996). The molecular biology of axon guidance. Science274, 1123-1133.

Trent, C., Tsung, N. and Horvitz, H. R. (1983). Egg-laying defective mutants of the nematode of C. elegans. Genetics104, 619-647.

Van Troys, M., Vandekerckhove, J. and Ampe, C. (1999). Structural modules in actin-binding proteins: towards a new classification. Biochim. Biophys. Acta1448, 323-348.

White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. (1986). The structure of the nervous system of the nematode C. elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci.314B, 1-340.

Wightman, B., Baran, R. and Garriga, G. (1997). Genes that guide growth cones along the C. elegans ventral nerve cord. Development124, 2571-2580.

Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W. and Schreiber, S. L. (1994). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell76, 933-945.