<i>The Brain's Default Network</i>

Annals of the New York Academy of Sciences - Tập 1124 Số 1 - Trang 1-38 - 2008
Randy L. Buckner1,2,3,4,5, Jessica R. Andrews‐Hanna1,2,3, Daniel L. Schacter3
1Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
2Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
3Department of Psychology, Harvard University, Cambridge, Massachusetts, USA
4Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
5Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA

Tóm tắt

Thirty years of brain imaging research has converged to define the brain's default network—a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self‐relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

Từ khóa


Tài liệu tham khảo

10.1097/00001756-199906030-00005

10.1002/hipo.20405

10.1016/j.neuropsychologia.2006.10.016

10.1016/S0959-4388(00)00202-6

10.1038/nrn1056

10.1038/nrn1884

10.1176/ajp.152.11.1576

10.1016/j.neuron.2007.10.038

Andrews‐Hanna J. R., 2007, The default system overlaps activation during theory of mind and episodic memory retrieval tasks, Soc. Neurosci. Abstr

10.1111/j.2044-8295.1968.tb01157.x

10.2466/pms.1966.23.2.399

10.1111/j.2164-0947.1970.tb02056.x

10.1176/appi.ajp.159.5.738

10.1152/jn.1995.73.5.2072

10.1016/0028-3932(95)00133-6

Balota D. A., 2001, Handbook of Neuropsychology VI: Aging and Dementia, 51

10.1016/j.tics.2007.05.005

10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO;2-1

10.1016/0010-0277(85)90022-8

10.1001/archneur.1983.04050110029003

Berger H., 1931, On the electroencephalogram of man: third report, Electroenceph. Clin. Neurophysiol. Supplement No., 28, 95

10.1162/089892999563265

10.1016/j.neuroimage.2006.02.048

10.1002/mrm.1910340409

10.1093/schbul/sbm052

10.1016/j.bandc.2007.07.011

10.1016/j.brainresbull.2003.06.001

Brothers L., 1990, The social brain: A project for integrating primate behavior and neurophysiology in a new domain, Concepts Neurosci., 1, 27

10.1007/BF00367450

10.1523/JNEUROSCI.16-19-06219.1996

10.1523/JNEUROSCI.2177-05.2005

10.1016/j.tics.2006.11.004

10.1016/j.neuroimage.2007.01.010

10.1016/j.tics.2007.02.005

10.1002/cne.903630408

10.1016/j.biopsych.2004.11.005

10.1016/j.neuroimage.2006.06.054

10.1093/brain/awf189

10.1002/cne.902870402

10.1093/brain/awl004

10.1523/JNEUROSCI.2250-06.2006

10.1097/01.wnr.0000239956.45448.4c

10.1016/j.neuron.2005.10.028

10.1523/JNEUROSCI.21-16-06283.2001

10.1038/nrn755

Cordes D., 2001, Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data, Am. J. Neuroradiol., 22, 1326

10.1212/WNL.57.2.245

10.1016/S0959-4388(00)00191-4

10.1016/j.concog.2005.09.001

D'Argembeau A., Neural correlates of envisioning emotional events in the year and far future, Neuroimage

Damoiseaux J. S., Reduced resting‐state brain activity in the “default network” in normal aging, Cereb. Cortex

10.1073/pnas.0601417103

10.1073/pnas.191044198

10.1016/j.neuroimage.2005.08.035

10.1038/nn1961

10.1016/j.neuron.2006.04.031

10.1038/80671

10.1016/0010-0277(95)00692-R

10.1073/pnas.0504136102

10.1073/pnas.0604187103

10.1038/nrn2201

Frackowiack R. S. J., 1991, Exploring Brain Functional Anatomy with Positron Emission Tomography, 231

10.1002/hbm.20113

10.1016/j.neuropsychologia.2006.06.017

10.1073/pnas.0704380104

10.1098/rstb.1996.0136

10.1016/j.mri.2006.04.018

10.1176/ajp.2007.164.3.450

10.1006/nimg.1995.1014

10.1037/0882-7974.4.2.136

10.1006/ccog.1995.1001

Gilbert D. T., 2006, Stumbling on Happiness, 277

10.1126/science.1144161

10.1126/science.1140801

10.1037/0096-1523.32.1.45

10.1016/S0896-6273(02)00800-0

10.1093/cercor/bhk030

10.1016/S1364-6613(02)02011-9

10.1126/science.1062872

10.1073/pnas.0135058100

10.1162/0898929042568532

10.1073/pnas.0308627101

10.1016/j.neuroimage.2007.09.007

10.1073/pnas.071043098

10.1038/35094500

10.1093/cercor/bhl075

10.1016/j.schres.2006.12.027

10.1523/JNEUROSCI.4549-07.2007

10.1016/j.tics.2007.05.001

10.1007/978-1-4615-4863-8_69

10.1523/JNEUROSCI.14-11-06336.1994

10.1038/nrn730

10.1523/JNEUROSCI.19-10-03962.1999

10.1097/00002093-199505000-00004

10.1006/nimg.2002.1208

Horovitz S. G., 2007, Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG‐fMRI study, Hum. Brain Mapp.

10.1073/pnas.0506268103

10.1212/WNL.40.11.1721

10.1016/j.tics.2006.08.002

Ingvar D. H., 1974, Patterns of brain activity revealed by measurements of regional cerebral blood flow, Alfred Benzon Symposium VIII

10.1111/j.1600-0404.1979.tb02947.x

Ingvar D. H., 1985, “Memory of the future”: an essay on the temporal organization of conscious awareness, Hum. Neurobiol., 4, 127

James W., 1890, The Principles of Psychology

10.1523/JNEUROSCI.3761-07.2007

10.1523/JNEUROSCI.14-06-03462.1994

10.1162/08989290260138672

10.1016/j.neuroimage.2007.10.052

10.1073/pnas.0600674103

10.1172/JCI101994

10.1162/089892905775008670

Klinger E., 1971, Structure and Functions of Fantasy

10.1002/ana.20009

10.1002/1096-9861(20001023)426:3<339::AID-CNE1>3.0.CO;2-8

10.1002/cne.10883

10.1002/cne.21346

10.1002/cne.20796

Kumar A., 1991, High‐resolution PET studies in Alzheimer's disease, Neuropsychopharmacology, 4, 35

10.1016/S0959-4388(00)00068-4

10.1002/cne.10243

10.1002/ar.1082

10.1016/j.neuroimage.2007.07.021

10.1073/pnas.0403535101

10.1017/S0033291700012976

10.1073/pnas.2235925100

10.1016/j.neuron.2004.04.002

10.1016/S0166-2236(98)01374-5

10.1098/rstb.2001.0944

10.1126/science.1131295

10.1038/nature02621

10.1016/S0361-9230(00)00437-8

10.1093/brain/awh332

McGuire P. K., 1996, Brain activity during stimulus independent thought, Neuroreport, 7, 2095

10.1016/j.neuroimage.2005.09.030

10.1162/089892903321593117

Mesulam M. M., 2000, Principles of Behavioral and Cognitive Neurology, 10.1093/oso/9780195134759.001.0001

10.1111/j.1749-6632.2000.tb05559.x

10.1002/ana.410420114

Mintun M. A., 2006, Distribution of glycolysis in the resting healthy human brain correlates with distribution of beta‐amyloid plaques in Alzheimer's disease, Soc. Neurosci. Abstr., 707.6

10.1212/01.wnl.0000228230.26044.a4

10.1016/j.neuron.2006.03.040

10.1038/nrn1768

10.1016/j.neuroimage.2006.09.013

10.1046/j.1460-9568.1999.00672.x

10.1002/(SICI)1096-9861(20000522)421:1<14::AID-CNE2>3.0.CO;2-S

10.1111/1469-7610.00165

10.1016/j.neuroimage.2005.11.018

10.1073/pnas.97.20.11120

10.1162/0898929042947829

10.1016/S1053-8119(03)00179-4

10.1093/cercor/10.3.206

10.1002/cne.10609

10.1016/j.neuropsychologia.2005.11.001

10.1016/S0960-9822(01)00454-7

10.1097/00001756-199507100-00009

10.1073/pnas.0507729103

Petrides M., 1994, Handbook of Neuropsychology, 17

10.1146/annurev.psych.56.091103.070234

10.1196/annals.1401.008

10.1002/cphy.cp010516

10.1126/science. 1134405

10.1073/pnas.98.2.676

10.1146/annurev.neuro.29.051605.112819

10.1016/j.neuroimage.2007.02.041

10.1038/nrn1343

10.1056/NEJM199603213341202

10.1016/j.neuroimage.2004.04.015

10.1073/pnas.0705132104

10.1002/hbm.20160

10.1016/0306-4522(87)90063-7

10.1016/S1053-8119(03)00230-1

10.1146/annurev.psych.55.090902.142044

10.1111/j.1467-9280.2006.01768.x

10.1073/pnas.052587399

10.1098/rstb.2007.2087

10.1038/nrn2213

Schacter D. L., 2008, Episodic simulation of future events: concepts, data, and applications, The Year in Cognitive Neuroscience 2008, Ann. N.Y. Acad. Sci., 1124, 39

Scheperjans F., 2007, Observer‐independent cytoarchitectonic mapping of the human superior parietal cortex, Cereb. Cortex

10.1523/JNEUROSCI.1297-04.2004

10.1038/nm0706-758

10.1002/1096-8644(200103)114:3<224::AID-AJPA1022>3.0.CO;2-I

Shannon B. J., 2006, Functional anatomic studies of memory retrieval and the default mode, 184

Shannon B. J., 2006, Spontaneous correlations and the default network: effects of task performance, Soc. Neurosci. Abstr., 119.5

10.1016/j.conb.2006.08.017

10.1038/nature06280

10.1162/jocn.1997.9.5.648

10.1016/S0896-6273(02)00575-5

10.2466/pms.1963.17.1.187

10.1037/h0048906

Singer J. L., 1966, Daydreaming: An Introduction to the Experimental Study of Inner Experience

Singer J. L., 1974, Daydreaming and the stream of thought, American Scientist, 62, 417

Singer J. L., 1972, The Function and Nature of Imagery, 175

10.1037/0033-2909.132.6.946

10.1172/JCI103159

10.1073/pnas.0708803104

10.1002/cne.903500402

10.1016/j.neuropsychologia.2006.05.023

10.1073/pnas.0610082104

Talairach J., 1988, Co‐planar stereotaxic atlas of the human brain

10.3758/BF03197257

10.1523/JNEUROSCI.23-03-00994.2003

10.1016/j.neuroimage.2007.03.044

10.1126/science.286.5446.1943

10.1093/acprof:oso/9780195161564.003.0001

10.1016/j.neuroimage.2005.06.058

10.1016/j.neuron.2007.10.015

10.1152/jn.00048.2006

10.1038/nature05758

Vincent J. L., 2007, Evidence for three distinct, bilateral frontoparietal associative brain systems revealed by spontaneous fMRI correlations, Soc. Neurosci. Abstr.

10.1162/089892904970799

10.1002/cne.1320

10.1016/S0079-6123(05)50015-3

10.1002/cne.903590310

10.1016/j.neuroimage.2005.07.048

10.1016/j.tics.2005.07.001

10.1016/j.neuroimage.2004.02.029

10.1016/j.neuron.2004.09.010

10.1002/hbm.20324

10.1038/nn1727

10.1073/pnas.97.20.11125

10.1016/j.neuroimage.2003.11.001

10.1093/schbul/sbm043

10.1016/0010-0277(83)90004-5

10.1016/j.neuroimage.2003.11.025

10.1523/JNEUROSCI.5295-04.2005

10.1016/j.schres.2007.05.029