Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors

Science advances - Tập 5 Số 1 - 2019
Stephen S. Dominy1, Casey Lynch1, Florian Ermini1, Małgorzata Benedyk2, Agata Marczyk2, Andrei W. Konradi1, Mai Nguyen1, Ursula Haditsch1, Debasish Raha1, Christina Griffin1, Leslie J. Holsinger1, Shirin Arastu‐Kapur1, Samer E. Kaba1, Alexander Lee1, Mark I. Ryder3, Barbara Potempa4, Piotr Mydel5,2, Annelie Hellvard5,6, Karina Adamowicz2, Hatice Hastürk7,8, Glenn D. Walker9, Eric C. Reynolds9, Richard L. M. Faull10, Maurice A. Curtis11, Mike Dragunow11, Jan Potempa2,4
1Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA.
2Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
3Division of Periodontology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA.
4Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
5Broegelman Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
6Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
7Harvard University School of Dental Medicine, Boston, MA, USA.
8The Forsyth Institute, Cambridge, MA, USA
9Cooperative Research Centre for Oral Health Science, Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Victoria, Australia.
10Department of Anatomy with Radiology, Centre for Brain Research and NeuroValida, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
11Centre for Brain Research and NeuroValida, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Tóm tắt

Gingipains from Porphyromonas gingivalis drive Alzheimer’s pathology and can be blocked with small-molecule inhibitors.

Từ khóa


Tài liệu tham khảo

10.1101/cshperspect.a006346

10.1038/cdd.2015.16

F. Mawanda, R. Wallace, Can infections cause Alzheimer's disease? Epidemiol. Rev. 35, 161–180 (2013).

10.1126/scitranslmed.aaf1059

10.1371/journal.pone.0009505

P. Spitzer, M. Condic, M. Herrmann, T. J. Oberstein, M. Scharin-Mehlmann, D. F. Gilbert, O. Friedrich, T. Grömer, J. Kornhuber, R. Lang, J. M. Maler, Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci. Rep. 6, 32228 (2016).

R. P. Darveau, G. Hajishengallis, M. A. Curtis, Porphyromonas gingivalis as a potential community activist for disease. J. Dent. Res. 91, 816–820 (2012).

E. K. Kaye, A. Valencia, N. Baba, A. Spiro III, T. Dietrich, R. I. Garcia, Tooth loss and periodontal disease predict poor cognitive function in older men. J. Am. Geriatr. Soc. 58, 713–718 (2010).

M. Gatz, J. A. Mortimer, L. Fratiglioni, B. Johansson, S. Berg, C. A. Reynolds, N. L. Pedersen, Potentially modifiable risk factors for dementia in identical twins. Alzheimers Dement. 2, 110–117 (2006).

P. S. Stein, M. Desrosiers, S. J. Donegan, J. F. Yepes, R. J. Kryscio, Tooth loss, dementia and neuropathology in the Nun study. J. Am. Dent. Assoc. 138, 1314–1322; quiz 1381–2 (2007).

A. R. Kamer, E. Pirraglia, W. Tsui, H. Rusinek, S. Vallabhajosula, L. Mosconi, L. Yi, P. McHugh, R. G. Craig, S. Svetcov, R. Linker, C. Shi, L. Glodzik, S. Williams, P. Corby, D. Saxena, M. J. de Leon, Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol. Aging 36, 627–633 (2015).

J. M. Noble, L. N. Borrell, P. N. Papapanou, M. S. V. Elkind, N. Scarmeas, C. B. Wright, Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-III. J. Neurol. Neurosurg. Psychiatry 80, 1206–1211 (2009).

M. Ide, M. Harris, A. Stevens, R. Sussams, V. Hopkins, D. Culliford, J. Fuller, P. Ibbett, R. Raybould, R. Thomas, U. Puenter, J. Teeling, V. H. Perry, C. Holmes, Periodontitis and cognitive decline in Alzheimer’s disease. PLOS ONE 11, e0151081 (2016).

S. Poole, S. K. Singhrao, S. Chukkapalli, M. Rivera, I. Velsko, L. Kesavalu, S. Crean, Active invasion of porphyromonas gingivalis and infection-induced complement activation in ApoE−/− mice brains. J. Alzheimers Dis. 43, 67–80 (2015).

N. Ishida, Y. Ishihara, K. Ishida, H. Tada, Y. Funaki-Kato, M. Hagiwara, T. Ferdous, M. Abdullah, A. Mitani, M. Michikawa, K. Matsushita, Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. NPJ Aging Mech. Dis. 3, 15 (2017).

S. Poole, S. K. Singhrao, L. Kesavalu, M. A. Curtis, S. Crean, Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J. Alzheimers Dis. 36, 665–677 (2013).

S. K. Singhrao, A. Harding, S. Poole, L. Kesavalu, S. Crean, Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm. 2015, 137357 (2015).

A. L. Griffen, M. R. Becker, S. R. Lyons, M. L. Moeschberger, E. J. Leys, Prevalence of Porphyromonas gingivalis and periodontal health status. J. Clin. Microbiol. 36, 3239–3242 (1998).

L. Forner, T. Larsen, M. Kilian, P. Holmstrup, Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J. Clin. Periodontol. 33, 401–407 (2006).

J. Mahendra, L. Mahendra, V. M. Kurian, K. Jaishankar, R. Mythilli, Prevalence of periodontal pathogens in coronary atherosclerotic plaque of patients undergoing coronary artery bypass graft surgery. J. Maxillofac. Oral Surg. 8, 108–113 (2009).

J. Katz, N. Chegini, K. T. Shiverick, R. J. Lamont, Localization of P. gingivalis in preterm delivery placenta. J. Dent. Res. 88, 575–578 (2009).

M. Ishikawa, K. Yoshida, H. Okamura, K. Ochiai, H. Takamura, N. Fujiwara, K. Ozaki, Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic glycogen synthesis through the Akt/GSK-3β signaling pathway. Biochim. Biophys. Acta 1832, 2035–2043 (2013).

J.-L. C. Mougeot, C. B. Stevens, B. J. Paster, M. T. Brennan, P. B. Lockhart, F. K. B. Mougeot, Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries. J. Oral Microbiol. 9, 1281562 (2017).

Y. Guo, K.-A. Nguyen, J. Potempa, Dichotomy of gingipains action as virulence factors: From cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol. 2000 54, 15–44 (2010).

M. J. Gui, S. G. Dashper, N. Slakeski, Y.-Y. Chen, E. C. Reynolds, Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Mol. Oral Microbiol. 31, 365–378 (2016).

D. Grenier, S. Roy, F. Chandad, P. Plamondon, M. Yoshioka, K. Nakayama, D. Mayrand, Effect of inactivation of the Arg- and/or Lys-gingipain gene on selected virulence and physiological properties of Porphyromonas gingivalis. Infect. Immun. 71, 4742–4748 (2003).

P. G. Stathopoulou, J. C. Galicia, M. R. Benakanakere, C. A. Garcia, J. Potempa, D. F. Kinane, Porphyromonas gingivalis induce apoptosis in human gingival epithelial cells through a gingipain-dependent mechanism. BMC Microbiol. 9, 107 (2009).

S. M. Sheets, J. Potempa, J. Travis, C. A. Casiano, H. M. Fletcher, Gingipains from Porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect. Immun. 73, 1543–1552 (2005).

J. A. Kinane, M. R. Benakanakere, J. Zhao, K. B. Hosur, D. F. Kinane, Porphyromonas gingivalis influences actin degradation within epithelial cells during invasion and apoptosis. Cell. Microbiol. 14, 1085–1096 (2012).

T. F. Flemmig, E. Milián, H. Karch, B. Klaiber, Differential clinical treatment outcome after systemic metronidazole and amoxicillin in patients harboring Actinobacillus actinomycetemcomitans and/or Porphyromonas gingivalis. J. Clin. Periodontol. 25, 380–387 (1998).

J. Travis, J. Potempa, Bacterial proteinases as targets for the development of second-generation antibiotics. Biochim. Biophys. Acta 1477, 35–50 (2000).

10.1038/nchembio.2007.24

C. T. Supuran, A. Scozzafava, A. Mastrolorenzo, Bacterial proteases: Current therapeutic use and future prospects for the development of new antibiotics. Expert Opin. Ther. Pat. 11, 221–259 (2001).

T. Kadowaki, A. Baba, N. Abe, R. Takii, M. Hashimoto, T. Tsukuba, S. Okazaki, Y. Suda, T. Asao, K. Yamamoto, Suppression of pathogenicity of Porphyromonas gingivalis by newly developed gingipain inhibitors. Mol. Pharmacol. 66, 1599–1606 (2004).

10.1097/NEN.0b013e31825018f7

10.1146/annurev.biochem.67.1.425

C. T. Chu, J. L. Caruso, T. J. Cummings, J. Ervin, C. Rosenberg, C. M. Hulette, Ubiquitin immunochemistry as a diagnostic aid for community pathologists evaluating patients who have dementia. Mod. Pathol. 13, 420–426 (2000).

R. Sperling, E. Mormino, K. Johnson, The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron 84, 608–622 (2014).

J. Potempa, K.-A. Nguyen, Purification and characterization of gingipains. Curr. Protoc. Protein Sci. Chapter 21, Unit 21.20 (2007).

J. Potempa, R. Pike, J. Travis, The multiple forms of trypsin-like activity present in various strains of Porphyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain. Infect. Immun. 63, 1176–1182 (1995).

A. Gmiterek, H. Wójtowicz, P. Mackiewicz, M. Radwan-Oczko, M. Kantorowicz, M. Chomyszyn-Gajewska, M. Frąszczak, M. Bielecki, M. Olczak, T. Olczak, The unique hmuY gene sequence as a specific marker of Porphyromonas gingivalis. PLOS ONE 8, e67719 (2013).

B. Linz, F. Balloux, Y. Moodley, A. Manica, H. Liu, P. Roumagnac, D. Falush, C. Stamer, F. Prugnolle, S. W. van der Merwe, Y. Yamaoka, D. Y. Graham, E. Perez-Trallero, T. Wadstrom, S. Suerbaum, M. Achtman, An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

C. Schabereiter-Gurtner, A. M. Hirschl, B. Dragosics, P. Hufnagl, S. Puz, Z. Kovách, M. Rotter, A. Makristathis, Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycin susceptibility testing of stool and biopsy specimens. J. Clin. Microbiol. 42, 4512–4518 (2004).

S. S. Spudich, A. C. Nilsson, N. D. Lollo, T. J. Liegler, C. J. Petropoulos, S. G. Deeks, E. E. Paxinos, R. W. Price, Cerebrospinal fluid HIV infection and pleocytosis: Relation to systemic infection and antiretroviral treatment. BMC Infect. Dis. 5, 98 (2005).

Y. Yamamoto, PCR in diagnosis of infection: Detection of bacteria in cerebrospinal fluids. Clin. Diagn. Lab. Immunol. 9, 508–514 (2002).

M. J. Espy, J. R. Uhl, L. M. Sloan, S. P. Buckwalter, M. F. Jones, E. A. Vetter, J. D. C. Yao, N. L. Wengenack, J. E. Rosenblatt, F. R. Cockerill III, T. F. Smith, Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clin. Microbiol. Rev. 19, 165–256 (2006).

H. Yin, J. Kuret, C-terminal truncation modulates both nucleation and extension phases of τ fibrillization. FEBS Lett. 580, 211–215 (2006).

B. Kovacech, M. Novak, Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer’s disease. Curr. Alzheimer Res. 7, 708–716 (2010).

10.1007/s00401-015-1503-3

D. Uberti, C. Rizzini, P. F. Spano, M. Memo, Characterization of tau proteins in human neuroblastoma SH-SY5Y cell line. Neurosci. Lett. 235, 149–153 (1997).

T. McAvoy, M. E. Lassman, D. S. Spellman, Z. Ke, B. J. Howell, O. Wong, L. Zhu, M. Tanen, A. Struyk, O. F. Laterza, Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin. Chem. 60, 683–689 (2014).

10.1016/j.neuron.2018.02.015

M. von Bergen, P. Friedhoff, J. Biernat, J. Heberle, E.-M. Mandelkow, E. Mandelkow, Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure. Proc. Natl. Acad. Sci. U.S.A. 97, 5129–5134 (2000).

J. Stöhr, H. Wu, M. Nick, Y. Wu, M. Bhate, C. Condello, N. Johnson, J. Rodgers, T. Lemmin, S. Acharya, J. Becker, K. Robinson, M. J. S. Kelly, F. Gai, G. Stubbs, S. B. Prusiner, W. F. DeGrado, A 31-residue peptide induces aggregation of tau’s microtubule-binding region in cells. Nat. Chem. 9, 874–881 (2017).

S. Eick, W. Pfister, Efficacy of antibiotics against periodontopathogenic bacteria within epithelial cells: An in vitro study. J. Periodontol. 75, 1327–1334 (2004).

E. Portelius, H. Zetterberg, R. A. Dean, A. Marcil, P. Bourgeois, M. Nutu, U. Andreasson, E. Siemers, K. G. Mawuenyega, W. C. Sigurdson, P. C. May, S. M. Paul, D. M. Holtzman, K. Blennow, R. J. Bateman, Amyloid-β1–15/16 as a marker for γ-secretase inhibition in Alzheimer’s disease. J. Alzheimers Dis. 31, 335–341 (2012).

M. Sztukowska, A. Sroka, M. Bugno, A. Banbula, Y. Takahashi, R. N. Pike, C. A. Genco, J. Travis, J. Potempa, The C-terminal domains of the gingipain K polyprotein are necessary for assembly of the active enzyme and expression of associated activities. Mol. Microbiol. 54, 1393–1408 (2004).

K.-A. Nguyen, J. Travis, J. Potempa, Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-Negative bacteria? J. Bacteriol. 189, 833–843 (2007).

K. Govindpani, B. Calvo-Flores Guzman, C. Vinnakota, H. J. Waldvogel, R. L. Faull, A. Kwakowsky, Towards a better understanding of GABAergic remodeling in Alzheimer’s disease. Int. J. Mol. Sci. 18, E1813 (2017).

W. Fornicola, A. Pelcovits, B.-X. Li, J. Heath, G. Perry, R. J. Castellani, Alzheimer disease pathology in middle age reveals a spatial-temporal disconnect between amyloid-β and phosphorylated tau. Open Neurol. J. 8, 22–26 (2014).

J. C. Lenzo, N. M. O’Brien-Simpson, R. K. Orth, H. L. Mitchell, S. G. Dashper, E. C. Reynolds, Porphyromonas gulae has virulence and immunological characteristics similar to those of the human periodontal pathogen Porphyromonas gingivalis. Infect. Immun. 84, 2575–2585 (2016).

Y. Yamasaki, R. Nomura, K. Nakano, S. Naka, M. Matsumoto-Nakano, F. Asai, T. Ooshima, Distribution of periodontopathic bacterial species in dogs and their owners. Arch. Oral Biol. 57, 1183–1188 (2012).

10.1073/pnas.1618657114

R. Zhou, G. Yang, Y. Shi, Dominant negative effect of the loss-of-function γ-secretase mutants on the wild-type enzyme through heterooligomerization. Proc. Natl. Acad. Sci. U.S.A. 114, 12731–12736 (2017).

W. B. Zigman, D. A. Devenny, S. J. Krinsky-McHale, E. C. Jenkins, T. K. Urv, J. Wegiel, N. Schupf, W. Silverman, Alzheimer’s disease in adults with Down syndrome. Int. Rev. Res. Ment. Retard. 36, 103–145 (2008).

P. J. Cichon, L. B. Crawford, W. D. Grimm, Early-onset periodontitis associated with Down’s syndrome—Clinical interventional study. Ann. Periodontol. 3, 370–380 (1998).

A. Amano, T. Kishima, S. Kimura, M. Takiguchi, T. Ooshima, S. Hamada, I. Morisaki, Periodontopathic bacteria in children with Down syndrome. J. Periodontol. 71, 249–255 (2000).

G. Ram, J. Chinen, Infections and immunodeficiency in Down syndrome. Clin. Exp. Immunol. 164, 9–16 (2011).

M. B. Giacona, P. N. Papapanou, I. B. Lamster, L. L. Rong, V. D. D’Agati, A. M. Schmidt, E. Lalla, Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiol. Lett. 241, 95–101 (2004).

10.1038/nrmicro.2016.178

B. R. Talamo, W.-H. Feng, M. Perez-Cruet, L. Adelman, K. Kosik, V. M.-Y. Lee, L. C. Cork, J. S. Kauer, Pathologic changes in olfactory neurons in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 640, 1–7 (1991).

L. Li, R. Michel, J. Cohen, A. DeCarlo, E. Kozarov, Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis. BMC Microbiol. 8, 26 (2008).

10.1093/brain/awx347

S. Urnowey, T. Ansai, V. Bitko, K. Nakayama, T. Takehara, S. Barik, Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: Potential role of bacterial proteases in host signalling. BMC Microbiol. 6, 26 (2006).

J. Chu, E. Lauretti, D. Praticò, Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: Implications for Alzheimer’s disease. Mol. Psychiatry 22, 1002–1008 (2017).

P. Sandhu, M. M. Naeem, C. Lu, P. Kumarathasan, J. Gomes, A. Basak, Ser422 phosphorylation blocks human Tau cleavage by caspase-3: Biochemical implications to Alzheimer’s Disease. Bioorg. Med. Chem. Lett. 27, 642–652 (2017).

10.1126/science.8346443

S. E. Roselaar, A. Daugherty, Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. J. Lipid Res. 39, 1740–1743 (1998).

J. Lönn, S. Ljunggren, K. Klarström-Engström, I. Demirel, T. Bengtsson, H. Karlsson, Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J. Periodontal Res. 53, 403–413 (2018).

F. M. Harris, W. J. Brecht, Q. Xu, I. Tesseur, L. Kekonius, T. Wyss-Coray, J. D. Fish, E. Masliah, P. C. Hopkins, K. Scearce-Levie, K. H. Weisgraber, L. Mucke, R. W. Mahley, Y. Huang, Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 100, 10966–10971 (2003).

10.1186/s13024-017-0197-5

P. Minoretti, C. Gazzaruso, C. D. Vito, E. Emanuele, M. P. Bianchi, E. Coen, M. Reino, D. Geroldi, Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett. 391, 147–149 (2006).

N. Brouwers, C. Van Cauwenberghe, S. Engelborghs, J.-C. Lambert, K. Bettens, N. Le Bastard, F. Pasquier, A. G. Montoya, K. Peeters, M. Mattheijssens, R. Vandenberghe, P. P. Deyn, M. Cruts, P. Amouyel, K. Sleegers, C. Van Broeckhoven, Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol. Psychiatry 17, 223–233 (2012).

M.-S. Tan, J.-T. Yu, T. Jiang, X.-C. Zhu, H.-F. Wang, W. Zhang, Y.-L. Wang, W. Jiang, L. Tan, NLRP3 polymorphisms are associated with late-onset Alzheimer’s disease in Han Chinese. J. Neuroimmunol. 265, 91–95 (2013).

10.3892/mmr.2013.1268

E.-N. N’Diaye, C. S. Branda, S. S. Branda, L. Nevarez, M. Colonna, C. Lowell, J. A. Hamerman, W. E. Seaman, TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J. Cell Biol. 184, 215–223 (2009).

10.1002/ana.24337

N. Bostanci, T. Thurnheer, J. Aduse-Opoku, M. A. Curtis, A. S. Zinkernagel, G. N. Belibasakis, Porphyromonas gingivalis regulates TREM-1 in human polymorphonuclear neutrophils via its gingipains. PLOS ONE 8, e75784 (2013).

F. Martinon, J. Tschopp, Inflammatory caspases: Linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

10.1186/s13024-016-0088-1

I. Olsen, Ö. Yilmaz, Modulation of inflammasome activity by Porphyromonas gingivalis in periodontitis and associated systemic diseases. J. Oral Microbiol. 8, 30385 (2016).

10.1038/nature25158

M. T.-H. Huang, D. J. Taxman, E. A. Holley-Guthrie, C. B. Moore, S. B. Willingham, V. Madden, R. K. Parsons, G. L. Featherstone, R. R. Arnold, B. P. O’Connor, J. P.-Y. Ting, Critical role of apoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells. J. Immunol. 182, 2395–2404 (2009).

S. Mariathasan, D. S. Weiss, V. M. Dixit, D. M. Monack, Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049 (2005).

T. N. Ellis, M. J. Kuehn, Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94 (2010).

J. D. Cecil, N. M. O’Brien-Simpson, J. C. Lenzo, J. A. Holden, W. Singleton, A. Perez-Gonzalez, A. Mansell, E. C. Reynolds, Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front. Immunol. 8, 1017 (2017).

A. J. Fleetwood, M. K. S. Lee, W. Singleton, A. Achuthan, M.-C. Lee, N. M. O’Brien-Simpson, A. D. Cook, A. J. Murphy, S. G. Dashper, E. C. Reynolds, J. A. Hamilton, Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Front. Cell. Infect. Microbiol. 7, 351 (2017).

Y. Zhao, F. Shao, Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr. Opin. Microbiol. 29, 37–42 (2016).

10.1126/scitranslmed.aac9103

Y. Shi, D. B. Ratnayake, K. Okamoto, N. Abe, K. Yamamoto, K. Nakayama, Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J. Biol. Chem. 274, 17955–17960 (1999).

J. W. Smalley, A. J. Birss, B. Szmigielski, J. Potempa, Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the haem-containing pigment from oxyhaemoglobin. Arch. Biochem. Biophys. 465, 44–49 (2007).

R. D. Pathirana, N. M. O’Brien-Simpson, G. C. Brammar, N. Slakeski, E. C. Reynolds, Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model. Infect. Immun. 75, 1436–1442 (2007).

C. L. Ventola, The antibiotic resistance crisis: Part 1: Causes and threats. P. T. 40, 277–283 (2015).

J. H. Kwon, M. A. Olsen, E. R. Dubberke, The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect. Dis. Clin. North Am. 29, 123–134 (2015).

P. J. Narayan, S.-L. Kim, C. Lill, S. Feng, R. L. M. Faull, M. A. Curtis, M. Dragunow, Assessing fibrinogen extravasation into Alzheimer’s disease brain using high-content screening of brain tissue microarrays. J. Neurosci. Methods 247, 41–49 (2015).

10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

J. L. Poirier, R. Čapek, Y. De Koninck, Differential progression of Dark Neuron and Fluoro-Jade labelling in the rat hippocampus following pilocarpine-induced status epilepticus. Neuroscience 97, 59–68 (2000).

J. M. Morillo, L. Lau, M. Sanz, D. Herrera, A. Silva, Quantitative real-time PCR based on single copy gene sequence for detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. J. Periodontal Res. 38, 518–524 (2003).