Planck2018 results

Astronomy and Astrophysics - Tập 641 - Trang A10 - 2020
NULL AUTHOR_ID, Y. Akrami1,2, A. J. Banday3, J. Aumont4, M. Ballardini5,6, A. J. Banday7,8, R. B. Barreiro9, S. Basak10, K. Benabed11,12, J.-P. Bernard7,8, M. Bersanelli13,14, J. J. Bock15,16, F. R. Bouchet17,18, C. Burigana19,20, R. C. Butler6, Erminia Calabrese21, J.-F. Cardoso11, Julien Carron22, A. Chamballu23, H. C. Chiang20,24, L. P. L. Colombo13, D. Contreras25, B. P. Crill15,16, F. Cuttaia6, P. de Bernardis26, G. de Zotti27,28, J.-M. Delouis11,12, Eleonora Di Valentino29, J. M. Diego9, S. Donzelli13,14, M. Douspis15,16, A. Ducout30,11, X. Dupac31, S. Dusini32, G. Efstathiou33, F. Elsner34, Y. Fantaye35,36, J. Fergusson37, R. Fernández-Cobos9, F. Finelli⋆6,38, F. Forastieri39,40, M. Frailis41, E. Franceschi6, S. Galeotta41, K. Ganga19, C. Gauthier19,42, R. T. Génova-Santos43,44, Martina Gerbino45, K. M. Górski46, A. Gruppuso33, Jan Hamann47, Will Handley4, D. Herranz9, E. Hivon11,12, Deanna C. Hooper48, Zhiqi Huang49, K. M. Huffenberger30, W. C. Jones24, E. Keihänen50, R. Keskitalo17, K. Kiiveri50,51, T. S. Kisner52, N. Krachmalnicoff28, M. Kunz35,53,54, H. Kurki-Suonio50,51, G. Lagache55, A. Lasenby4, M. Lattanzi39,40, M. Le Jeune19, J. Lesgourgues48, M. Liguori56, Antony Lewis22, P. B. Lilje2, V. Lindholm50,51, M. López-Caniego31, Yin-Zhe Ma29,57, B. Maffei58, D. Maino13,14,59, N. Mandolesi39,6, A. Mangilli7, A. Marcos-Caballero9, M. Maris41, P. G. Martin60, E. Martínez-González9, S. Matarrese61,62,32, N. Mauri38, P. Daniel Meerburg33,63, P. Mazzotta64, A. Melchiorri26,65, A. Mennella13,14, M. Migliaccio66,67, S. Mitra68,16, M.-A. Miville-Deschênes69, A. Moneti39,6,40, G. Morgante7,8, P. Naselsky70, Moritz Münchmeyer11, P. Natoli39,40,67, T. P. Ray71, F. Pajot54,56, D. Paoletti6,38, Hiranya V. Peiris72, F. Perrotta28, V. Pettorino73,74, F. Piacentini26, G. Pisano39,40, G. Polenta67, S. Prunet54,11, J. P. Rachen75, M. Reinecke34, M. Remazeilles29, A. Renzi32, G. Rocha15,16, J. A. Rubiño-Martín43,44, B. Ruiz-Granados43,44, M. Sandri6, D. Scott25, E. P. S. Shellard37, Maresuke Shiraishi76,61,32, C. Sirignano61,32, G. Sirri38, R. Sunyaev34,77, J. A. Tauber50,51, D. Tavagnacco78,41, M. Tenti79, L. Toffolatti46,6, M. Tomasi13,14, J. Väliviita80,40, B. Van Tent81, P. Vielva9, F. Villa6, N. Vittorio82, B. D. Wandelt83,11,12, I. K. Wehus2,16, A. Zacchei41, J. P. Zibin25
1Institute Lorentz, Leiden University, PO Box 9506, Leiden 2300, The Netherlands
2Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
3Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
4Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
5Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa
6INAF – OAS Bologna, Istituto Nazionale di Astrofisica – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Area della Ricerca del CNR, Via Gobetti 101, 40129 Bologna, Italy
7CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
8Université de Toulouse, UPS-OMP, IRAP, 31028 Toulouse Cedex 4, France
9Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, Santander, Spain
10School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
11Institut d’Astrophysique de Paris, CNRS (UMR7095), 98bis boulevard Arago, 75014 Paris, France
12UPMC Univ. Paris 06, UMR7095, 98bis boulevard Arago, 75014 Paris, France
13Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy
14INAF/IASF Milano, Via E. Bassini 15, Milano, Italy
15California Institute of Technology, Pasadena, CA, USA
16Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA
17Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
18Space Sciences Laboratory, University of California, Berkeley, CA, USA
19APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France
20Astrophysics & Cosmology Research Unit, School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
21School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, UK
22Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK
23Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
24Department of Physics, Princeton University, Princeton, NJ, USA
25Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, Canada
26Dipartimento di Fisica, Università La Sapienza, P.le A. Moro 2, Roma, Italy
27INAF, Osservatorio Astronomico di Padova, Vicolo dell’ Osservatorio 5, Padova, Italy
28SISSA, Astrophysics Sector, Via Bonomea 265, 34136 Trieste, Italy
29Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
30Imperial College London, Astrophysics group, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
31European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain
32Istituto Nazionale di Fisica Nucleare, Sezione di Padova, via Marzolo 8, 35131 Padova, Italy
33Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 0HA, UK
34Max-Planck-Institut, für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
35African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town, South Africa
36Department of Mathematics, University of Stellenbosch, Stellenbosch 7602, South Africa
37Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
38INFN, Sezione di Bologna, Viale Berti Pichat, 6/2, 40127 Bologna, Italy
39Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
40INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
41INAF – Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, Italy
42Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, 10617, Taiwan
43Departamento de Astrofísica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
44Instituto de Astrofísica de Canarias C/ Vía Láctea s/n, La Laguna, Tenerife, Spain
45The Oskar Klein Centre for Cosmoparticle Physics & Department of Physics, Stockholm University, AlbaNova, 106 91, Stockholm, Sweden
46Departamento de Física, Universidad de Oviedo, C/ Federico García Lorca, 18, Oviedo, Spain
47School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
48Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, 52056, Aachen, Germany
49School of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Rd, Tangjia, Zhuhai, PR China
50Department of Physics, Gustaf Hällströmin katu 2a, University of Helsinki, Helsinki, Finland
51Helsinki Institute of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
52Lawrence Berkeley National Laboratory, Berkeley, CA USA
53Département de Physique Théorique, Université de Genève, 24, quai E. Ansermet, 1211 Genève 4, Switzerland
54Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay Cedex, France
55Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
56LERMA, CNRS, Observatoire de Paris, 61 avenue de l’Observatoire, Paris, France
57NAOC-UKZN Computational Astrophysics Centre (NUCAC), University of KwaZulu-Natal, Durban 4000, South Africa
58Laboratoire de Physique Subatomique et Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex, France
59INFN, Sezione di Milano, Via Celoria 16, Milano, Italy
60CITA, University of Toronto, 60 St George St., Toronto, ON M5S 3H8, Canada
61Dipartimento di Fisica e Astronomia G. Galilei, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
62Gran Sasso Science Institute (INFN), viale F. Crispi 7, 67100 L’Aquila, Italy
63Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 Groningen, The Netherlands
64Department of Physics, University of California, Santa Barbara, CA, USA
65INFN, Sezione di Roma 1, Università di Roma Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
66INFN, Sezione di Roma 2, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
67Space Science Data Center – Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Roma, Italy
68IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, Pune 411 007, India
69Laboratoire AIM, CEA – Université Paris-Saclay, 91191 Gif-sur-Yvette, France
70School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
71DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Kgs. Lyngby, Denmark
72Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
73AIM, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
74AIM, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
75Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
76Department of General Education, National Institute of Technology, Kagawa College 355, Chokushi-cho, Takamatsu, Kagawa, 761-8058, Japan
77Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya Str, 84/32, Moscow 117997, Russia
78Dipartimento di Fisica, Università degli Studi di Trieste, Via A. Valerio 2, Trieste, Italy
79INFN – CNAF, Viale Berti Pichat 6/2, 40127 Bologna, Italy
80INAF, Istituto di Radioastronomia, Via Piero Gobetti 101, 40129 Bologna, Italy
81Laboratoire de Physique Théorique, Université Paris-Sud 11 & CNRS, Bâtiment 210, 91405 Orsay, France
82Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
83Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, USA

Tóm tắt

We report on the implications for cosmic inflation of the 2018 release of thePlanckcosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previousPlanckcosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.Plancktemperature, polarization, and lensing data determine the spectral index of scalar perturbations to bens = 0.9649 ± 0.0042 at 68% CL. We find no evidence for a scale dependence ofns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combiningPlanckwith a compilation of baryon acoustic oscillation data. ThePlanck95% CL upper limit on the tensor-to-scalar ratio,r0.002 <  0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtainr0.002 <  0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential,V″(ϕ) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc−1 ≲ k ≲ 0.2 Mpc−1. A complementary analysis also finds no evidence for theoretically motivated parameterized features in thePlanckpower spectra. For the case of oscillatory features that are logarithmic or linear ink, this result is further strengthened by a new combined analysis including thePlanckbispectrum data. The newPlanckpolarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively.Planckpower spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.

Từ khóa


Tài liệu tham khảo

Abazajian K. N., Adshead P., Ahmed Z., et al. 2016, CMB-S4 Science Book, 1st edn.

Abbott, 2017, Phys. Rev. Lett., 118, 121101, 10.1103/PhysRevLett.118.121101

Achúcarro, 2011, JCAP, 1101, 030, 10.1088/1475-7516/2011/01/030

Achúcarro, 2014, Phys. Rev. D, 90, 023511, 10.1103/PhysRevD.90.023511

Achúcarro, 2014, Phys. Rev. D, 89, 103006, 10.1103/PhysRevD.89.103006

Ackerman, 2007, Phys. Rev. D, 75, 083502, 10.1103/PhysRevD.75.083502

Adams, 1993, Phys. Rev. D, 47, 426, 10.1103/PhysRevD.47.426

Adams, 2001, Phys. Rev. D, 64, 123514, 10.1103/PhysRevD.64.123514

Addison, 2018, AJ, 853, 119, 10.3847/1538-4357/aaa1ed

Ade, 2016, Phys. Rev. Lett., 116, 031302, 10.1103/PhysRevLett.116.031302

Ade, 2018, Phys. Rev. Lett., 121, 221301, 10.1103/PhysRevLett.121.221301

Adshead, 2014, Phys. Rev. D, 89, 083531, 10.1103/PhysRevD.89.083531

Adshead, 2012, Phys. Rev. D, 85, 023531, 10.1103/PhysRevD.85.023531

Alam, 2017, MNRAS, 470, 2617, 10.1093/mnras/stx721

Albrecht, 1982, Phys. Rev. Lett., 48, 1220, 10.1103/PhysRevLett.48.1220

Amendola, 2002, Phys. Rev. Lett., 88, 211302, 10.1103/PhysRevLett.88.211302

Audren, 2013, JCAP, 1302, 001

Bardeen, 1983, Phys. Rev. D, 28, 679, 10.1103/PhysRevD.28.679

Bartolo, 2002, Phys. Rev. D, 65, 121301, 10.1103/PhysRevD.65.121301

Bartolo, 2001, Phys. Rev. D, 64, 123504, 10.1103/PhysRevD.64.123504

Bartolo, 2004, Phys. Rev. Lett., 93, 231301, 10.1103/PhysRevLett.93.231301

Bartolo, 2004, Phys. Rev. D, 69, 043503, 10.1103/PhysRevD.69.043503

Bartolo, 2013, JCAP, 1310, 038, 10.1088/1475-7516/2013/10/038

Bastero-Gil, 2016, Phys. Rev. Lett., 117, 151301, 10.1103/PhysRevLett.117.151301

Bean, 2006, Phys. Rev. D, 74, 063503, 10.1103/PhysRevD.74.063503

Behbahani, 2012, JCAP, 1211, 056, 10.1088/1475-7516/2012/11/056

Behbahani, 2012, JCAP, 1212, 036, 10.1088/1475-7516/2012/12/036

Beltrán, 2004, Phys. Rev. D, 70, 103530, 10.1103/PhysRevD.70.103530

Beltrán, 2005, Phys. Rev. D, 72, 103515, 10.1103/PhysRevD.72.103515

Benetti, 2013, Phys. Rev. D, 88, 087302, 10.1103/PhysRevD.88.087302

Bennett, 2011, ApJS, 192, 17, 10.1088/0067-0049/192/2/17

Bennett, 2012, ApJS, 208, 54

Bennett, 2013, ApJS, 208, 20, 10.1088/0067-0049/208/2/20

Berera, 1995, Phys. Rev. Lett., 75, 3218, 10.1103/PhysRevLett.75.3218

Beutler, 2011, MNRAS, 416, 3017, 10.1111/j.1365-2966.2011.19250.x

Bezrukov, 2008, Phys. Lett. B, 659, 703, 10.1016/j.physletb.2007.11.072

Bezrukov, 2012, Phys. Lett. B, 713, 365, 10.1016/j.physletb.2012.06.040

BICEP2/Keck Array and Planck Collaborations, 2015, Phys. Rev. Lett., 114, 101301, 10.1103/PhysRevLett.114.101301

Blas, 2011, JCAP, 1107, 034, 10.1088/1475-7516/2011/07/034

Boubekeur, 2005, JCAP, 0507, 010, 10.1088/1475-7516/2005/07/010

Boyle, 2004, Phys. Rev. D, 69, 127302, 10.1103/PhysRevD.69.127302

Bozza, 2003, JCAP, 0305, 001

Brandenberger, 2007, Phys. Rev. Lett., 98, 231302, 10.1103/PhysRevLett.98.231302

Brout, 1978, Ann. Phys., 115, 78, 10.1016/0003-4916(78)90176-8

Bucher, 1995, Phys. Rev. D, 52, 3314, 10.1103/PhysRevD.52.3314

Bucher, 2000, Phys. Rev. D, 62, 083508, 10.1103/PhysRevD.62.083508

Bucher, 2004, Phys. Rev. Lett., 93, 081301, 10.1103/PhysRevLett.93.081301

Burgess, 2002, J. High Energy Phys., 0203, 052, 10.1088/1126-6708/2002/03/052

Burgess, 2013, JCAP, 1311, 003, 10.1088/1475-7516/2013/11/003

Byrnes, 2006, Phys. Rev. D, 74, 043529, 10.1103/PhysRevD.74.043529

Byrnes, 2016, JCAP, 1606, 025, 10.1088/1475-7516/2016/06/025

Byrnes, 2016, Phys. Rev. D, 93, 123003, 10.1103/PhysRevD.93.123003

Cabass, 2016, Phys. Rev. D, 93, 063508, 10.1103/PhysRevD.93.063508

Calabrese, 2008, Phys. Rev. D, 77, 123531, 10.1103/PhysRevD.77.123531

Chen, 2010, Adv. Astron., 2010, 43, 10.1155/2010/638979

Chen, 2012, JCAP, 1201, 038, 10.1088/1475-7516/2012/01/038

Chen, 2007, JCAP, 0706, 023, 10.1088/1475-7516/2007/06/023

Chen, 2008, JCAP, 0804, 010, 10.1088/1475-7516/2008/04/010

Chluba, 2015, Int. J. Mod. Phys. D, 24, 1530023, 10.1142/S0218271815300232

Chung, 2018, Phys. Rev. D, 98, 023525, 10.1103/PhysRevD.98.023525

Cicoli, 2009, JCAP, 0903, 013, 10.1088/1475-7516/2009/03/013

Cline, 2003, JCAP, 0309, 010, 10.1088/1475-7516/2003/09/010

Contaldi, 2003, JCAP, 0307, 002, 10.1088/1475-7516/2003/07/002

Contreras, 2017, Phys. Rev. D, 96, 123522, 10.1103/PhysRevD.96.123522

Contreras, 2018, Phys. Rev. D, 97, 063504, 10.1103/PhysRevD.97.063504

Danielsson, 2002, Phys. Rev. D, 66, 023511, 10.1103/PhysRevD.66.023511

Dunkley, 2005, Phys. Rev. Lett., 95, 261303, 10.1103/PhysRevLett.95.261303

Durakovic, 2018, JCAP, 1802, 012, 10.1088/1475-7516/2018/02/012

Dvali, 1999, Phys. Lett. B, 450, 72, 10.1016/S0370-2693(99)00132-X

Dvali, 1994, Phys. Rev. Lett., 73, 1886, 10.1103/PhysRevLett.73.1886

Dvali G., Shafi Q., & Solganik S. 2001, [arXiv:hep-th/0105203]

Easther, 2014, JCAP, 1402, 037, 10.1088/1475-7516/2014/02/037

Easther, 2005, JCAP, 0505, 009

Efstathiou, 1986, MNRAS, 218, 103, 10.1093/mnras/218.1.103

Efstathiou, 1987, MNRAS, 227, 33P, 10.1093/mnras/227.1.33P

Efstathiou, 1999, MNRAS, 304, 75, 10.1046/j.1365-8711.1999.02274.x

Efstathiou G., & Gratton S. 2019, ArXiv e-prints [arXiv:1910.00483]

Enqvist, 2002, Nucl. Phys. B, 626, 395, 10.1016/S0550-3213(02)00043-3

Enqvist, 2000, Phys. Rev. D, 62, 103003, 10.1103/PhysRevD.62.103003

Enqvist, 2002, Phys. Rev. D, 65, 043002, 10.1103/PhysRevD.65.043002

Erickcek, 2009, Phys. Rev. D, 80, 083507, 10.1103/PhysRevD.80.083507

Eriksen, 2004, ApJ, 605, 14, 10.1086/382267

Fakir, 1990, Phys. Rev. D, 41, 1783, 10.1103/PhysRevD.41.1783

Fergusson, 2009, Phys. Rev. D, 80, 043510, 10.1103/PhysRevD.80.043510

Fergusson, 2010, Phys. Rev. D, 82, 023502, 10.1103/PhysRevD.82.023502

Fergusson, 2012, JCAP, 12, 032, 10.1088/1475-7516/2012/12/032

Fergusson, 2015, Phys. Rev. D, 91, 023502, 10.1103/PhysRevD.91.023502

Fergusson, 2015, Phys. Rev. D, 91, 123506, 10.1103/PhysRevD.91.123506

Feroz, 2009, MNRAS, 398, 1601, 10.1111/j.1365-2966.2009.14548.x

Feroz F., Hobson M., Cameron E., & Pettitt A. 2013, Importance Nested Sampling and the MultiNest Algorithm, 28

Ferrara, 2016, Phys. Rev. D, 94, 126015, 10.1103/PhysRevD.94.126015

Ferrara, 2013, Phys. Rev. D, 88, 085038, 10.1103/PhysRevD.88.085038

Finelli, 2010, JCAP, 1004, 011, 10.1088/1475-7516/2010/04/011

Finelli, 2018, JCAP, 1804, 016, 10.1088/1475-7516/2018/04/016

Flauger, 2011, JCAP, 1101, 017, 10.1088/1475-7516/2011/01/017

Flauger, 2010, JCAP, 1006, 009, 10.1088/1475-7516/2010/06/009

Flauger, 2017, JCAP, 1710, 055, 10.1088/1475-7516/2017/10/055

Flauger, 2017, JCAP, 1710, 058, 10.1088/1475-7516/2017/10/058

Freese, 1990, Phys. Rev. Lett., 65, 3233, 10.1103/PhysRevLett.65.3233

García-Bellido, 1996, Phys. Rev. D, 53, 5437, 10.1103/PhysRevD.53.5437

García-Bellido, 2002, J. High Energy Phys., 0201, 036, 10.1088/1126-6708/2002/01/036

García-Bellido, 2009, Phys. Rev. D, 79, 063531, 10.1103/PhysRevD.79.063531

Garriga, 1999, Phys. Lett. B, 458, 219, 10.1016/S0370-2693(99)00602-4

Gasperini, 1993, Astropart. Phys., 1, 317, 10.1016/0927-6505(93)90017-8

Gauthier, 2012, JCAP, 1210, 050, 10.1088/1475-7516/2012/10/050

Goncharov, 1984, Sov. Phys. JETP, 59, 930

Gong, 2001, Phys. Lett. B, 510, 1

Gong, 2017, Phys. Rev. D, 95, 083510, 10.1103/PhysRevD.95.083510

Gordon, 2003, Phys. Rev. D, 67, 123513, 10.1103/PhysRevD.67.123513

Gordon, 2009, Phys. Rev. D, 80, 063535, 10.1103/PhysRevD.80.063535

Gordon, 2001, Phys. Rev. D, 63, 023506, 10.1103/PhysRevD.63.023506

Gott, 1982, Nature, 295, 304, 10.1038/295304a0

Gott, 1984, Phys. Lett. B, 136, 157, 10.1016/0370-2693(84)91171-7

Graham R. L., Knuth D. E., & Patashnik O. 1994, Concrete Mathematics: A Foundation for Computer Science, 2nd edn. (Boston: Addison-Wesley Longman Publishing Co., Inc.)

Grin, 2011, Phys. Rev. D, 84, 123003, 10.1103/PhysRevD.84.123003

Grin, 2011, Phys. Rev. Lett., 107, 261301, 10.1103/PhysRevLett.107.261301

Grin, 2014, Phys. Rev. D, 89, 023006, 10.1103/PhysRevD.89.023006

Gruppuso, 2016, Phys. Dark Univ., 11, 68, 10.1016/j.dark.2015.12.001

Guth, 1981, Phys. Rev. D, 23, 347, 10.1103/PhysRevD.23.347

Guth, 1982, Phys. Rev. Lett., 49, 1110, 10.1103/PhysRevLett.49.1110

Guth, 2014, Phys. Lett. B, 733, 112, 10.1016/j.physletb.2014.03.020

Haga, 2018, JCAP, 08, 036, 10.1088/1475-7516/2018/08/036

Hamann, 2010, JCAP, 1004, 010, 10.1088/1475-7516/2010/04/010

Handley, 2018, J. Open Source Softw., 3, 849, 10.21105/joss.00849

Handley, 2015, MNRAS, 450, L61, 10.1093/mnrasl/slv047

Handley, 2015, MNRAS, 453, 4384, 10.1093/mnras/stv1911

Handley, 2019, Phys. Rev. D, 100, 103511, 10.1103/PhysRevD.100.103511

Harrison, 1970, Phys. Rev. D, 1, 2726, 10.1103/PhysRevD.1.2726

Haslam, 1982, A&AS, 47, 1

Hawking, 1982, Phys. Lett. B, 115, 295, 10.1016/0370-2693(82)90373-2

Hazra, 2014, Phys. Rev. Lett., 113, 071301, 10.1103/PhysRevLett.113.071301

Hazra, 2014, JCAP, 1411, 011, 10.1088/1475-7516/2014/11/011

Hazra, 2016, JCAP, 1609, 009, 10.1088/1475-7516/2016/09/009

He, 2015, Phys. Rev. D, 92, 063018, 10.1103/PhysRevD.92.063018

Hee, 2016, MNRAS, 466, 369, 10.1093/mnras/stw3102

Heinrich, 2016, Phys. Rev. D, 94, 043534, 10.1103/PhysRevD.94.043534

Hivon, 2017, A&A, 598, A25, 10.1051/0004-6361/201629626

Holder, 2010, ApJ, 716, 907, 10.1088/0004-637X/716/2/907

Hou, 2014, ApJ, 782, 74, 10.1088/0004-637X/782/2/74

Hu, 2011, Phys. Rev. D, 84, 027303, 10.1103/PhysRevD.84.027303

Hunt, 2014, JCAP, 1401, 025, 10.1088/1475-7516/2014/01/025

Hunt, 2015, JCAP, 1512, 052, 10.1088/1475-7516/2015/12/052

Ijjas, 2016, Class. Quant. Grav., 33, 044001, 10.1088/0264-9381/33/4/044001

Ijjas, 2013, Phys. Lett. B, 723, 261, 10.1016/j.physletb.2013.05.023

Jackson, 2013, Phys. Rev. D, 88, 123511, 10.1103/PhysRevD.88.123511

Jackson, 2014, Phys. Rev. D, 89, 023510, 10.1103/PhysRevD.89.023510

Jeffreys H. 1998, Theory of Probability, 3rd edn. (Oxford: Oxford University Press)

Kachru, 2003, JCAP, 0310, 013, 10.1088/1475-7516/2003/10/013

Kallosh, 2013, J. High Energy Phys., 1311, 198, 10.1007/JHEP11(2013)198

Kallosh, 2017, J. High Energy Phys., 04, 144, 10.1007/JHEP04(2017)144

Kaloper, 2011, JCAP, 1103, 023, 10.1088/1475-7516/2011/03/023

Kasuya, 2009, Phys. Rev. D, 80, 023516, 10.1103/PhysRevD.80.023516

Kazanas, 1980, ApJ, 241, L59, 10.1086/183361

Keskitalo, 2007, JCAP, 0709, 008, 10.1088/1475-7516/2007/09/008

Kleban, 2012, JCAP, 1206, 029, 10.1088/1475-7516/2012/06/029

Kobayashi, 2010, Phys. Rev. Lett., 105, 231302, 10.1103/PhysRevLett.105.231302

Komatsu, 2009, ApJS, 180, 330, 10.1088/0067-0049/180/2/330

Kuhnel, 2010, Phys. Rev. Lett., 105, 211302, 10.1103/PhysRevLett.105.211302

Kurki-Suonio, 2005, Phys. Rev. D, 71, 063005, 10.1103/PhysRevD.71.063005

Langlois, 1999, Phys. Rev. D, 59, 123512, 10.1103/PhysRevD.59.123512

Langlois, 2000, Phys. Rev. D, 62, 043504, 10.1103/PhysRevD.62.043504

Leach, 2002, Phys. Rev. D, 66, 023515, 10.1103/PhysRevD.66.023515

Lesgourgues J. 2011, ArXiv e-prints [arXiv:1104.2932]

Lewis, 2002, Phys. Rev. D, 66, 103511, 10.1103/PhysRevD.66.103511

Lewis, 2006, Phys. Rep., 429, 1, 10.1016/j.physrep.2006.03.002

Lewis, 2000, ApJ, 538, 473, 10.1086/309179

Liddle, 2003, Phys. Rev. D, 68, 103503, 10.1103/PhysRevD.68.103503

Linde A. 2015, Proceedings, 100th Les Houches Summer School: Post-Planck Cosmology: Les Houches, France, July 8–August 2, 2013, 231

Linde A. 2017, Black Holes, Gravitational Waves and Spacetime Singularities Rome, Italy, May 9–12, 2017

Linde, 1982, Phys. Lett. B, 108, 389, 10.1016/0370-2693(82)91219-9

Linde, 1983, Phys. Lett. B, 129, 177, 10.1016/0370-2693(83)90837-7

Linde, 1985, Phys. Lett. B, 158, 375, 10.1016/0370-2693(85)90436-8

Linde, 1997, Phys. Rev. D, 56, 535, 10.1103/PhysRevD.56.R535

Lucchin, 1986, Phys. Lett. B, 167, 163, 10.1016/0370-2693(86)90592-7

Lyth, 2002, Phys. Lett. B, 524, 5, 10.1016/S0370-2693(01)01366-1

Lyth, 1990, Phys. Lett. B, 252, 336, 10.1016/0370-2693(90)90548-K

Lyth, 2003, Phys. Rev. D, 67, 023503, 10.1103/PhysRevD.67.023503

Maleknejad, 2013, Phys. Rep., 528, 161, 10.1016/j.physrep.2013.03.003

Marsh, 2016, Phys. Rep., 643, 1, 10.1016/j.physrep.2016.06.005

Martin, 2003, Phys. Rev. D, 68, 063513, 10.1103/PhysRevD.68.063513

Martin, 2010, Phys. Rev. D, 82, 023511, 10.1103/PhysRevD.82.023511

Martin, 2014, JCAP, 1403, 039

Martin, 2014, Phys. Dark Univ., 5, 75, 10.1016/j.dark.2014.01.003

McAllister, 2010, Phys. Rev. D, 82, 046003, 10.1103/PhysRevD.82.046003

McAllister, 2014, J. High Energy Phys., 09, 123, 10.1007/JHEP09(2014)123

Meerburg, 2014, Phys. Rev. D, 90, 063529, 10.1103/PhysRevD.90.063529

Meerburg, 2015, Phys. Rev. D, 92, 063527, 10.1103/PhysRevD.92.063527

Meerburg, 2013, JCAP, 1302, 017, 10.1088/1475-7516/2013/02/017

Meerburg, 2009, JCAP, 0905, 018, 10.1088/1475-7516/2009/05/018

Meerburg P. D., Spergel D. N., & Wandelt B. D. 2014a, Proceedings, 49th Rencontres de Moriond on Cosmology: La Thuile, Italy, March 15–22, 2014, 27

Meerburg, 2014, Phys. Rev. D, 89, 063536, 10.1103/PhysRevD.89.063536

Meerburg, 2014, Phys. Rev. D, 89, 063537, 10.1103/PhysRevD.89.063537

Meerburg, 2015, Phys. Rev. D, 91, 103505, 10.1103/PhysRevD.91.103505

Meerburg, 2016, Phys. Rev. D, 93, 043536, 10.1103/PhysRevD.93.043536

Miranda, 2014, Phys. Rev. D, 89, 083529, 10.1103/PhysRevD.89.083529

Miranda, 2012, Phys. Rev. D, 86, 063529, 10.1103/PhysRevD.86.063529

Miranda, 2015, Phys. Rev. D, 91, 063514, 10.1103/PhysRevD.91.063514

Mollerach, 1990, Phys. Rev. D, 42, 313, 10.1103/PhysRevD.42.313

Moodley, 2004, Phys. Rev. D, 70, 103520, 10.1103/PhysRevD.70.103520

Mooij, 2016, JCAP, 1609, 004, 10.1088/1475-7516/2016/09/004

Moroi, 2001, Phys. Lett. B, 522, 215, 10.1016/S0370-2693(01)01295-3

Moss, 2011, Phys. Rev. D, 84, 023014, 10.1103/PhysRevD.84.023014

Muñoz, 2016, Phys. Rev. D, 93, 043008, 10.1103/PhysRevD.93.043008

Mukhanov, 1985, JETP Lett., 41, 493

Mukhanov, 1981, JETP Lett., 33, 532

Mukhanov, 1982, Sov. Phys. JETP, 56, 258

Münchmeyer, 2014, A&A, 570, A94, 10.1051/0004-6361/201424179

Münchmeyer, 2015, Phys. Rev. D, 91, 043534, 10.1103/PhysRevD.91.043534

Obied, 2017, Phys. Rev. D, 96, 083526, 10.1103/PhysRevD.96.083526

Okamoto, 2003, Phys. Rev. D, 67, 083002, 10.1103/PhysRevD.67.083002

Ooba, 2018, ApJ, 864, 80, 10.3847/1538-4357/aad633

Palma, 2015, JCAP, 1504, 035, 10.1088/1475-7516/2015/04/035

Peebles, 1970, ApJ, 162, 815, 10.1086/150713

Peiris, 2003, ApJS, 148, 213, 10.1086/377228

Peiris, 2013, JCAP, 1309, 018, 10.1088/1475-7516/2013/09/018

Pierpaoli, 1999, J. High Energy Phys., 10, 015, 10.1088/1126-6708/1999/10/015

Planck Collaboration XV, 2014, A&A, 571, A15, 10.1051/0004-6361/201321573

Planck Collaboration XXII, 2014, A&A, 571, A22, 10.1051/0004-6361/201321569

Planck Collaboration XXIII, 2014, A&A, 571, A23, 10.1051/0004-6361/201321534

Planck Collaboration XXIV, 2014, A&A, 571, A24, 10.1051/0004-6361/201321554

Planck Collaboration I, 2016, A&A, 594, A1, 10.1051/0004-6361/201527101

Planck Collaboration XI, 2016, A&A, 594, A11, 10.1051/0004-6361/201526926

Planck Collaboration XIII, 2016, A&A, 594, A13, 10.1051/0004-6361/201525830

Planck Collaboration XV, 2016, A&A, 594, A15, 10.1051/0004-6361/201525941

Planck Collaboration XVI, 2016, A&A, 594, A16, 10.1051/0004-6361/201526681

Planck Collaboration XVII, 2016, A&A, 594, A17, 10.1051/0004-6361/201525836

Planck Collaboration XVIII, 2016, A&A, 594, A18, 10.1051/0004-6361/201525829

Planck Collaboration XX, 2016, A&A, 594, A20, 10.1051/0004-6361/201525898

Planck Collaboration I, 2020, A&A, 641, A1, 10.1051/0004-6361/201833880

Planck Collaboration II, 2020, A&A, 641, A2, 10.1051/0004-6361/201833293

Planck Collaboration III, 2020, A&A, 641, A3, 10.1051/0004-6361/201832909

Planck Collaboration IV, 2020, A&A, 641, A4, 10.1051/0004-6361/201833881

Planck Collaboration V, 2020, A&A, 641, A5, 10.1051/0004-6361/201936386

Planck Collaboration VI, 2020, A&A, 641, A6, 10.1051/0004-6361/201833910

Planck Collaboration VII, 2020, A&A, 641, A7, 10.1051/0004-6361/201935201

Planck Collaboration VIII, 2020, A&A, 641, A8, 10.1051/0004-6361/201833886

Planck Collaboration IX, 2020, A&A, 641, A9, 10.1051/0004-6361/201935891

Planck Collaboration X, 2020, A&A, 641, A10, 10.1051/0004-6361/201833887

Planck Collaboration XI, 2020, A&A, 641, A11, 10.1051/0004-6361/201832618

Planck Collaboration XII, 2020, A&A, 641, A12, 10.1051/0004-6361/202037583

Planck Collaboration Int. XLVI, 2016, A&A, 596, A107, 10.1051/0004-6361/201628890

Planck Collaboration Int. XLVII, 2016, A&A, 596, A108, 10.1051/0004-6361/201628897

Polarski, 1994, Phys. Rev. D, 50, 6123, 10.1103/PhysRevD.50.6123

Ratra, 1995, Phys. Rev. D, 52, 1837, 10.1103/PhysRevD.52.1837

Raveri M., Martinelli M., Zhao G., & Wang Y. 2016, ArXiv e-prints [arXiv:1606.06273]

Ross, 2015, MNRAS, 449, 835, 10.1093/mnras/stv154

Salopek, 1989, Phys. Rev. D, 40, 1753, 10.1103/PhysRevD.40.1753

Sasaki, 2006, Phys. Rev. D, 74, 103003, 10.1103/PhysRevD.74.103003

Sato, 1981, MNRAS, 195, 467, 10.1093/mnras/195.3.467

Savelainen, 2013, Phys. Rev. D, 88, 063010, 10.1103/PhysRevD.88.063010

Scott, 2016, JCAP, 1606, 046, 10.1088/1475-7516/2016/06/046

Seljak, 1996, ApJ, 463, 1, 10.1086/177218

Silverstein, 2008, Phys. Rev. D, 78, 106003, 10.1103/PhysRevD.78.106003

Sinha, 2006, Phys. Rev. D, 74, 043518, 10.1103/PhysRevD.74.043518

Skilling J. 2004, in AIP Conf. Ser., eds. Fischer R., Preuss R., & Toussaint U. V., 735, 395

Smith, 2017, Phys. Rev. D, 96, 083508, 10.1103/PhysRevD.96.083508

Soda, 2012, Class. Quant. Grav., 29, 083001, 10.1088/0264-9381/29/8/083001

Soumagnac, 2016, Phys. Rev. Lett., 116, 201302, 10.1103/PhysRevLett.116.201302

Soumagnac, 2019, MNRAS, 485, 1248, 10.1093/mnras/stz240

Spokoiny, 1984, Phys. Lett. B, 147, 39, 10.1016/0370-2693(84)90587-2

Starobinsky, 1983, Sov. Astron. Lett., 9, 302

Starobinsky, 1980, Phys. Lett. B, 91, 99, 10.1016/0370-2693(80)90670-X

Starobinsky, 1982, Phys. Lett. B, 117, 175, 10.1016/0370-2693(82)90541-X

Starobinsky, 1992, JETP Lett., 55, 489

Stewart, 1995, Phys. Rev. D, 51, 6847, 10.1103/PhysRevD.51.6847

Stewart, 1993, Phys. Lett. B, 302, 171, 10.1016/0370-2693(93)90379-V

Stompor, 1996, ApJ, 463, 8, 10.1086/177219

Takahashi, 2009, Phys. Rev. D, 80, 063524, 10.1103/PhysRevD.80.063524

Torrado, 2017, Phys. Rev. D, 96, 083515, 10.1103/PhysRevD.96.083515

Trotta, 2007, MNRAS, 378, 72, 10.1111/j.1365-2966.2007.11738.x

Trotta, 2007, MNRAS, 375, L26, 10.1111/j.1745-3933.2006.00268.x

Trotta, 2008, Contemp. Phys., 49, 71, 10.1080/00107510802066753

Tsujikawa, 2014, Progr. Theoret. Exp. Phys., 2014, 06B104, 10.1093/ptep/ptu047

Valiviita, 2017, JCAP, 1704, 014, 10.1088/1475-7516/2017/04/014

Valiviita, 2009, Phys. Rev. D, 80, 123516, 10.1103/PhysRevD.80.123516

Valiviita, 2003, Phys. Rev. Lett., 91, 131302, 10.1103/PhysRevLett.91.131302

Valiviita, 2012, ApJ, 753, 151, 10.1088/0004-637X/753/2/151

van Tent, 2004, Class. Quant. Grav., 21, 349, 10.1088/0264-9381/21/2/002

Verde, 2013, JCAP, 1306, 023, 10.1088/1475-7516/2013/06/023

Vilenkin, 1982, Phys. Rev. D, 26, 1231, 10.1103/PhysRevD.26.1231

Wands, 2002, Phys. Rev. D, 66, 043520, 10.1103/PhysRevD.66.043520

Waterhouse T. P., & Zibin J. P. 2008, ArXiv e-prints [arXiv:0804.1771]

Yamamoto, 1995, ApJ, 455, 412, 10.1086/176588

Zeldovich, 1972, MNRAS, 160, 1P, 10.1093/mnras/160.1.1P