Listeria monocytogenesInfection Overcomes the Requirement for CD40 Ligand in Exogenous Antigen Presentation to CD8+ T Cells

Journal of Immunology - Tập 167 Số 10 - Trang 5603-5609 - 2001
Sara E. Hamilton1, Amy Tvinnereim2, John T. Harty1,2
1*Interdisciplinary Program in Immunology and
2Department of Microbiology, University of Iowa, Iowa City, IA 52242

Tóm tắt

AbstractIn vivo priming of CD8+ T lymphocytes against exogenously processed model Ags requires CD4+ T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4+ T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8+ T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8+ T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8+ T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8+ T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8+ T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-γ was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8+ T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8+ T cell responses against exogenous Ags during infection.

Từ khóa


Tài liệu tham khảo

Schoenberger, S. P., R. E. M. Toes, E. I. H. van der Voort, R. Offringa, C. J. M. Melief. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480

Bennett, S. R. M., F. R. Carbone, F. Karamalis, R. A. Flavell, J. F. A. P. Miller, W. R. Heath. 1998. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478

Ridge, J. P., F. Di Rosa, P. Matzinger. 1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474

Bevan, M. J.. 1976. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross react in the cytotoxic assay. J. Exp. Med. 143: 1283

Heath, W. R., F. R. Carbone. 2001. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19: 47

Caux, C., C. Massacrier, B. Vanbervliet, B. Dubois, C. Van Kooten, I. Durand, J. Banchereau. 1994. Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med. 180: 1263

Banchereau, J., R. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245

Whitmire, J. K., R. A. Flavell, I. S. Grewal, C. P. Larsen, T. C. Pearson, R. Ahmed. 1999. CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. J. Immunol. 163: 3194

Andreasen, S. O., J. E. Christensen, O. Marker, A. R. Thomsen. 2000. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J. Immunol. 164: 3689

Borrow, P., A. Tishon, S. Lee, J. Xu, I. S. Grewal, M. B. A. Oldstone, R. A. Flavell. 1996. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183: 2129

Grewal, I. S., P. Borrow, E. G. Pamer, M. B. A. Oldstone, R. A. Flavell. 1997. The CD40-CD154 system in anti-infective host defense. Curr. Opin. Immunol. 9: 491

Pope, C., S. Kim, A. Marzo, K. Williams, J. Jiang, H. Shen, L. Lefrancois. 2001. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166: 3402

Cossart, P., M. F. Vicente, J. Mengaud, F. Baquero, D. J. C. Perez, P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57: 3629

Shen, H., J. F. Miller, X. Fan, D. Kolwyck, R. Ahmed, J. T. Harty. 1998. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92: 535

Brundage, R. A., G. A. Smith, A. Camilli, J. A. Theriot, D. A. Portnoy. 1993. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Natl. Acad. Sci. USA 90: 11890

Jones, S., D. Portnoy. 1994. Characterization of Listeria monocytogenes pathogenesis in a strain expression perfringolysin O in place of listeriolysin O. Infect. Immun. 62: 5608

Harty, J. T., M. J. Bevan. 1995. Specific immunity to Listeria monocytogenes in the absence of IFNγ. Immunity 3: 107

Moore, M. W., F. R. Carbone, M. J. Bevan. 1988. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54: 777

Tvinnereim, A. R., J. T. Harty. 2000. CD8+ T cell priming against a non-secreted Listeria monocytogenes antigen is independent of the anti-microbial activities of IFN-γ. Infect. Immun. 68: 2196

Noelle, R. J., M. Roy, D. M. Shepherd, I. Stamenkovic, J. A. Ledbetter, A. Arrufo. 1992. A novel ligand on activated T helper cells binds CD40 and transduces the signal for the cognate activation of B cells. Proc. Natl. Acad. Sci. USA 89: 6550

Abrams, J., M. Roncarolo, H. Yssel, U. Andersson, G. Gleich, J. Silver. 1992. Strategies of anti-cytokine monoclonal antibody development: immunoassay of IL-10 and IL-5 in clinical samples. Immunol. Rev. 127: 5

Cherwinski, H., J. Schumacher, K. Brown, T. Mosmann. 1987. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J. Exp. Med. 166: 1229

Harty, J. T., M. J. Bevan. 1992. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J. Exp. Med. 175: 1531

Foy, T. M., J. D. Laman, J. A. Ledbetter, A. Aruffo, E. Claassen, R. J. Noelle. 1994. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med. 180: 157

Badovinac, V. P., J. T. Harty. 2000. Intracellular staining for TNF and IFN-γ detects different frequencies of antigen-specific CD8+ T cells. J. Immunol. Methods 238: 107

White, D., A. MacNeil, D. Busch, I. Pilip, E. Pamer, J. Harty. 1999. Perforin-deficient CD8+ T cells: in vivo priming and antigen specific immunity against Listeria monocytogenes. J. Immunol. 162: 980

Badovinac, V. P., A. R. Tvinnereim, J. T. Harty. 2000. Regulation of antigen-specific CD8+ T cell homeostasis by Perforin and IFN-γ. Science 290: 1354

Gaillard, J., P. Berche, J. Mounier, S. Richard, P. Sansonetti. 1987. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun. 55: 2822

Portnoy, D., P. Jacks, D. Hinrichs. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167: 1459

Sallusto, F., A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179: 1109

Green, E. A., F. S. Wong, K. Eshima, C. Mora, R. A. Flavell. 2000. Neonatal tumor necrosis factor α promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8+ T cells. J. Exp. Med. 191: 225

White, D. W., J. T. Harty. 1998. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. J. Immun. 160: 898

den Haan, J. M. M., S. M. Lehar, M. J. Bevan. 2000. CD8+ but not CD8− dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192: 1685

Schulz, O., A. D. Edwards, M. Schito, J. Aliberti, S. Manickasingham, A. Sher, C. Reis e Sousa. 2000. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13: 453

Rudnicka, W., M. Kaczmarek, J. Szeliga, T. Germann, M. Wieckowska, B. Rozalska. 1997. The host response to Listeria monocytogenes mutants defective in genes encoding phospholipases C (plcA, plcB) and actin assembly (actA). Microbiol. Immunol. 41: 847

Locksley, R. M.. 1993. Interleukin-12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90: 5879

Wild, J., M. Grusby, R. Schirmbeck, J. Reimann. 1999. Priming MHC-I-restricted cytotoxic T lymphocyte responses to exogenous hepatitis B surface antigen is CD4+ T cell dependent. J. Immunol. 163: 1880

Rolph, M. S., S. H. E. Kaufmann. 2001. CD40 signaling converts a minimally immunogenic antigen into a potent vaccine against the intracellular pathogen Listeria monocytogenes. J. Immunol. 166: 5115

Anderson, D. M., E. Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko, E. R. Roux, M. C. Teepe, R. F. DuBose, D. Cosman, L. Galibert. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390: 175

Cannons, J., P. Lau, B. Ghumman, M. DeBenedette, H. Yagita, K. Okumura, T. Watts. 2001. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J. Immunol. 167: 1313

Guzman, C., M. Rohde, T. Chakraborty, E. Domann, M. Hudel, J. Wheland, K. Timmis. 1995. Interaction of Listeria monocytogenes with mouse dendritic cells. Infect. Immun. 63: 3665

Noseworthy, J. H., C. Lucchinetti, M. Rodriguez, B. G. Weinshenker. 2000. Multiple sclerosis. N. Engl. J. Med. 343: 938