<i>In vitro</i> assessment of electrospun polyamide‐6 scaffolds for esophageal tissue engineering

Margarita Zhuravleva1, Zarema E. Gilazieva1, T. Е. Grigoriev2, А. Д. Шепелев2, Т. Х. Тенчурин2, Roman Kamyshinsky2, С. В. Крашенинников2, С. В. Орлов3, Gina Caralogli3, Svetlana Archipova1, Mark Holterman4, M. O Mavlikeev1, Р. В. Деев5,6, С. Н. Чвалун2, Paolo Macchiarini1
1Laboratory of Bioengineering and Regenerative Medicine (BioReM), Kazan Federal University, Kazan, Russia
2National Research Center Kurchatov Institute, Moscow, Russia
3Scientific Research Institute of Medical Primatology, Sochi, Russia
4University of Illinois College of Medicine Peoria, Peoria, Illinois
5Human Stem Cells Institute, Moscow, Russia; Ryazan State Medical University Ryazan Russia
6Ryazan State Medical University, Ryazan, Russia

Tóm tắt

AbstractArtificial tissue‐engineered grafts offer a potential alternative to autologous tissue grafts for patients, which can be traumatic. After decellularizing Papio hamadryas esophagus and studying the morphology and physical properties of the extracellular matrix (ECM), we generated electrospun polyamide‐6 based scaffolds to mimic it. The scaffolds supported a greater mechanical load than the native ECM and demonstrated similar 3D microstructure, with randomly aligned fibers, 90% porosity, 29 μm maximal pore size, and average fiber diameter of 2.87 ± 0.95 µm. Biocompatibility studies showed that human adipose‐ and bone marrow‐derived mesenchymal stromal cells (AD‐MSC and BMD‐MSC) adhered to the scaffold surface and showed some proliferation: scaffold cell coverage was 25% after 72 h of incubation when seeded with 1000 cells/mm2; cells elongated processes along the polyamide‐6, although they flattened 1.67–4 times less than on cell culture plastic. Human umbilical vein endothelial cells, however, showed poor adherence and proliferation. We thus provide in vitro evidence that polyamide‐6 scaffolds approximating the esophageal biomechanics and 3D topography of nonhuman primates may provide a biocompatible substrate for both AD‐MSC and BMD‐MSCs, supporting their adhesion and survival to some degree. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 253–268, 2019.

Từ khóa


Tài liệu tham khảo

10.1007/s11605-017-3423-0

10.1016/j.jpedsurg.2017.02.003

10.1016/j.jpedsurg.2017.03.046

10.1007/s00595-016-1462-x

10.1016/S0140-6736(08)61598-6

10.1016/j.jtcvs.2008.09.085

10.1016/S0140-6736(06)68438-9

10.1089/ten.tea.2010.0739

10.1016/B978-0-12-397157-9.00053-9

10.1016/j.athoracsur.2006.06.036

10.1111/aor.12925

10.1016/j.actbio.2013.10.023

10.1016/j.actbio.2017.01.079

10.1016/j.biomaterials.2006.09.051

Leong MF, Effect of electrospun poly (d,l‐lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption, J Biomed Mater Res A, 89, 1040

Natsume T, 1990, Experimental studies of a hybrid artificial esophagus combined with autologous mucosal cells, ASAIO Trans, 36, M435

10.1016/S0022-5223(03)00032-1

10.1016/S0140-6736(15)01036-3

Sotnichenko A, 2016, Esophagus decellularization protocols in Macaca mulatta model, Med News North Caucasus, 2, 200

General and Plastic Surgery Devices. In:Code of Federal Regulations Title 21;2016.https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?FR=878.5020Accessed 02 June 2017.

10.1016/j.bsbt.2015.08.002

10.1002/bjs.18004820827

10.1002/jcp.25071

10.1016/j.jbiomech.2014.05.017

10.1016/j.actbio.2016.08.055

10.1002/jbm.b.32756

Crampton SP, 2007, Isolation of umbilical vein endothelial cells (HUVEC), J Vis Exp, 3, 183

10.1016/j.ymeth.2008.03.006

10.1080/14653240600855905

10.1016/S0140-6736(12)60073-7

Reddi AH., 2000, Morphogenetic messages are in the extracellular matrix: Biotechnology from bench to bedside, Biochem Soc Trans, 28, 345, 10.1042/bst0280345

10.1053/joca.1998.0161

10.1016/S1350-4533(00)00087-4

10.1016/B978-0-12-397157-9.00001-1

10.3390/ijms160714808

Liu XD, 2013, Electrospinning of nanofibers for tissue engineering applications, J Nanomater

Dhandayuthapani B, 2011, Polymeric scaffolds in tissue engineering application: A review, Int J Polym Sci, 10.1155/2011/290602

10.1016/j.biomaterials.2015.04.004

10.3390/polym3031377

10.1002/jbm.a.33118

10.1080/09205063.2014.884427

Srikanth P, 2011, . Handbook of Bioplastics and Biocomposites Engineering Applications, 373

10.1088/1748-6041/9/1/015012

10.1203/01.PDR.0b013e318165eb3e

10.1016/S0142-9612(02)00170-9

10.1159/000076650

10.1515/cdbme-2016-0006

10.1016/j.carbpol.2016.03.094

10.1016/j.msec.2010.11.013

10.1679/aohc.65.109

Alberts B, 2002, Molecular Biology of the Cell

10.1002/btpr.391

10.4172/2157-7552.1000103e

10.1007/s10439-015-1520-3

10.1111/wrr.12251

10.1007/978-1-62703-363-3_7

10.1667/RR3224

10.1111/j.1582-4934.2007.00041.x

10.1634/stemcells.2005-0342

10.1089/scd.2013.0578

10.3233/CH-2012-1608

10.1002/jbm.a.33216

10.1159/000113407

10.3748/wjg.v18.i47.6900

10.1016/j.biomaterials.2004.10.007

10.1016/j.biomaterials.2005.05.049

10.1016/j.biomaterials.2009.03.020

10.1002/bit.22912

10.1089/ten.teb.2012.0603

10.1111/j.1582-4934.2011.01442.x

10.1369/0022155413502055

10.1038/srep39676

10.1016/j.biomaterials.2005.08.004

10.1007/s11095-010-0320-6

10.1163/156856209X429166