In Operando analysis of the charge storage mechanism in a conversion ZnCo2O4 anode and the application in flexible Li-ion batteries

Inorganic Chemistry Frontiers - Tập 6 Số 7 - Trang 1861-1872
Zijian Zhao1,2,3,4, Guiying Tian1,2,3,4, Vanessa Trouillet1,2,3,5,6, Lihua Zhu1,2,3,4, Jiangong Zhu1,2,3,4, Alexander Missyul7,8,9, Edmund Welter10,11,2, Sonia Dsoke1,2,12,13,3
176344 Eggenstein-Leopoldshafen
2Germany
3Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
4Karlsruhe Institute of Technology (KIT)
5Karlsruhe Nano Micro Facility (KNMF)
6Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
708290 Cerdanyola del Vallès
8CELLS-ALBA
9Spain
10D-22607 Hamburg
11Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
12Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU)
13Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany

Tóm tắt

Intermediate phases of LiCo2O3, CoO and ZnO are evidenced during the 1st lithiation of a ZnCo2O4 anode.

Từ khóa


Tài liệu tham khảo

Manthiram, 2017, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103

Peng, 2018, J. Energy Chem., 27, 611, 10.1016/j.jechem.2018.01.008

Bai, 2015, ACS Appl. Mater. Interfaces, 7, 22848, 10.1021/acsami.5b05303

Cheng, 2008, Chem. Mater., 20, 667, 10.1021/cm702091q

Sharma, 2007, Adv. Funct. Mater., 17, 2855, 10.1002/adfm.200600997

Wang, 2019, J. Mater. Chem. A, 7, 3024, 10.1039/C9TA00045C

Ren, 2019, Electrochim. Acta, 297, 1011, 10.1016/j.electacta.2018.12.061

Liu, 2018, J. Power Sources, 395, 92, 10.1016/j.jpowsour.2018.05.064

Lu, 2018, Electrochem. Energy Rev., 1, 35, 10.1007/s41918-018-0001-4

Guo, 2008, Adv. Mater., 20, 2878, 10.1002/adma.200800627

Lu, 2018, Chem, 4, 972, 10.1016/j.chempr.2018.01.003

Gao, 2013, Chem. Soc. Rev., 42, 2986, 10.1039/c2cs35310e

Bin Zhong, 2015, J. Power Sources, 296, 298, 10.1016/j.jpowsour.2015.07.047

Hu, 2013, J. Mater. Chem. A, 1, 5596, 10.1039/c3ta00085k

Deng, 2019, Adv. Energy Mater., 1803612, 1803612, 10.1002/aenm.201803612

Balachandran, 2015, ChemElectroChem, 2, 1510, 10.1002/celc.201500197

Wu, 2018, Electrochim. Acta, 263, 515, 10.1016/j.electacta.2018.01.047

Zhang, 2018, Nano Energy, 48, 238, 10.1016/j.nanoen.2018.03.053

Zhang, 2013, Sci. Rep., 3, 2

Luo, 2019, ChemElectroChem, 6, 690, 10.1002/celc.201801513

Wang, 2018, Electrochim. Acta, 273, 1, 10.1016/j.electacta.2018.04.023

Liu, 2012, Nano Lett., 12, 3005, 10.1021/nl300794f

Huang, 2015, Nano Energy, 11, 64, 10.1016/j.nanoen.2014.09.027

Wang, 2017, J. Mater. Sci.: Mater. Electron., 28, 9081

Liu, 2013, Nano Res., 6, 525, 10.1007/s12274-013-0329-3

Zhang, 2018, Ceram. Int., 44, 16219, 10.1016/j.ceramint.2018.06.002

Bai, 2015, J. Mater. Chem. A, 3, 21891, 10.1039/C5TA05798A

Ma, 2017, Nano Energy, 42, 341, 10.1016/j.nanoen.2017.11.030

Zhao, 2018, J. Mater. Chem. A, 6, 19381, 10.1039/C8TA06294C

Scofield, 1976, J. Electron Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1

Herklotz, 2016, J. Appl. Crystallogr., 49, 340, 10.1107/S1600576715022165

Ravel, 2005, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719

Yu, 2005, Adv. Mater., 17, 1595, 10.1002/adma.200500322

Cheng, 2017, Ionics, 23, 77, 10.1007/s11581-016-1807-x

Cheng, 2017, Ionics, 23, 77, 10.1007/s11581-016-1807-x

Bai, 2014, Adv. Funct. Mater., 24, 3012, 10.1002/adfm.201303442

Šepelák, 2012, J. Mater. Chem., 22, 3117, 10.1039/c2jm15427g

Azmi, 2018, Surf. Interface Anal., 50, 43, 10.1002/sia.6330

Azmi, 2018, Surf. Interface Anal., 1

Kumar, 2017, ACS Omega, 2, 6003, 10.1021/acsomega.7b00709

Biesinger, 2011, Appl. Surf. Sci., 257, 2717, 10.1016/j.apsusc.2010.10.051

Zhong, 2015, J. Power Sources, 296, 298, 10.1016/j.jpowsour.2015.07.047

Ai, 2004, J. Mater. Sci., 39, 1077, 10.1023/B:JMSC.0000012948.27433.83

Lee, 2016, J. Power Sources, 312, 207, 10.1016/j.jpowsour.2016.02.049

Tarascon, 2000, Nature, 407, 496, 10.1038/35035045

Aricò, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368

Duncan, 2015, J. Electrochem. Soc., 162, A7110, 10.1149/2.0141513jes

Song, 2014, Electrochim. Acta, 137, 266, 10.1016/j.electacta.2014.05.126

Bresser, 2013, Adv. Energy Mater., 3, 513, 10.1002/aenm.201200735

Du, 2007, Adv. Mater., 19, 4505, 10.1002/adma.200602513

Hu, 2015, J. Am. Chem. Soc., 137, 5590, 10.1021/jacs.5b02465

Yu, 2014, J. Phys. Chem. C, 118, 10616, 10.1021/jp5010693

Cohn, 2014, Nanoscale, 6, 4669, 10.1039/C4NR00390J

Muller, 2015, Nano Lett., 15, 1911, 10.1021/nl504764m

Yu, 2007, J. Electrochem. Soc., 154, A253, 10.1149/1.2434687

Zhang, 2016, Sci. Rep., 6, 25942, 10.1038/srep25942

Cabana, 2010, Adv. Mater., 22, 170, 10.1002/adma.201000717

Yuan, 2015, Chem. – Eur. J., 21, 1262, 10.1002/chem.201404624