Manthiram, 2017, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103
Peng, 2018, J. Energy Chem., 27, 611, 10.1016/j.jechem.2018.01.008
Bai, 2015, ACS Appl. Mater. Interfaces, 7, 22848, 10.1021/acsami.5b05303
Cheng, 2008, Chem. Mater., 20, 667, 10.1021/cm702091q
Sharma, 2007, Adv. Funct. Mater., 17, 2855, 10.1002/adfm.200600997
Wang, 2019, J. Mater. Chem. A, 7, 3024, 10.1039/C9TA00045C
Ren, 2019, Electrochim. Acta, 297, 1011, 10.1016/j.electacta.2018.12.061
Liu, 2018, J. Power Sources, 395, 92, 10.1016/j.jpowsour.2018.05.064
Lu, 2018, Electrochem. Energy Rev., 1, 35, 10.1007/s41918-018-0001-4
Guo, 2008, Adv. Mater., 20, 2878, 10.1002/adma.200800627
Lu, 2018, Chem, 4, 972, 10.1016/j.chempr.2018.01.003
Gao, 2013, Chem. Soc. Rev., 42, 2986, 10.1039/c2cs35310e
Bin Zhong, 2015, J. Power Sources, 296, 298, 10.1016/j.jpowsour.2015.07.047
Hu, 2013, J. Mater. Chem. A, 1, 5596, 10.1039/c3ta00085k
Deng, 2019, Adv. Energy Mater., 1803612, 1803612, 10.1002/aenm.201803612
Balachandran, 2015, ChemElectroChem, 2, 1510, 10.1002/celc.201500197
Wu, 2018, Electrochim. Acta, 263, 515, 10.1016/j.electacta.2018.01.047
Zhang, 2018, Nano Energy, 48, 238, 10.1016/j.nanoen.2018.03.053
Zhang, 2013, Sci. Rep., 3, 2
Luo, 2019, ChemElectroChem, 6, 690, 10.1002/celc.201801513
Wang, 2018, Electrochim. Acta, 273, 1, 10.1016/j.electacta.2018.04.023
Liu, 2012, Nano Lett., 12, 3005, 10.1021/nl300794f
Huang, 2015, Nano Energy, 11, 64, 10.1016/j.nanoen.2014.09.027
Wang, 2017, J. Mater. Sci.: Mater. Electron., 28, 9081
Liu, 2013, Nano Res., 6, 525, 10.1007/s12274-013-0329-3
Zhang, 2018, Ceram. Int., 44, 16219, 10.1016/j.ceramint.2018.06.002
Bai, 2015, J. Mater. Chem. A, 3, 21891, 10.1039/C5TA05798A
Ma, 2017, Nano Energy, 42, 341, 10.1016/j.nanoen.2017.11.030
Zhao, 2018, J. Mater. Chem. A, 6, 19381, 10.1039/C8TA06294C
Scofield, 1976, J. Electron Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1
Herklotz, 2016, J. Appl. Crystallogr., 49, 340, 10.1107/S1600576715022165
Ravel, 2005, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719
Yu, 2005, Adv. Mater., 17, 1595, 10.1002/adma.200500322
Cheng, 2017, Ionics, 23, 77, 10.1007/s11581-016-1807-x
Cheng, 2017, Ionics, 23, 77, 10.1007/s11581-016-1807-x
Bai, 2014, Adv. Funct. Mater., 24, 3012, 10.1002/adfm.201303442
Šepelák, 2012, J. Mater. Chem., 22, 3117, 10.1039/c2jm15427g
Azmi, 2018, Surf. Interface Anal., 50, 43, 10.1002/sia.6330
Azmi, 2018, Surf. Interface Anal., 1
Kumar, 2017, ACS Omega, 2, 6003, 10.1021/acsomega.7b00709
Biesinger, 2011, Appl. Surf. Sci., 257, 2717, 10.1016/j.apsusc.2010.10.051
Zhong, 2015, J. Power Sources, 296, 298, 10.1016/j.jpowsour.2015.07.047
Ai, 2004, J. Mater. Sci., 39, 1077, 10.1023/B:JMSC.0000012948.27433.83
Lee, 2016, J. Power Sources, 312, 207, 10.1016/j.jpowsour.2016.02.049
Tarascon, 2000, Nature, 407, 496, 10.1038/35035045
Aricò, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368
Duncan, 2015, J. Electrochem. Soc., 162, A7110, 10.1149/2.0141513jes
Song, 2014, Electrochim. Acta, 137, 266, 10.1016/j.electacta.2014.05.126
Bresser, 2013, Adv. Energy Mater., 3, 513, 10.1002/aenm.201200735
Du, 2007, Adv. Mater., 19, 4505, 10.1002/adma.200602513
Hu, 2015, J. Am. Chem. Soc., 137, 5590, 10.1021/jacs.5b02465
Yu, 2014, J. Phys. Chem. C, 118, 10616, 10.1021/jp5010693
Cohn, 2014, Nanoscale, 6, 4669, 10.1039/C4NR00390J
Muller, 2015, Nano Lett., 15, 1911, 10.1021/nl504764m
Yu, 2007, J. Electrochem. Soc., 154, A253, 10.1149/1.2434687
Zhang, 2016, Sci. Rep., 6, 25942, 10.1038/srep25942
Cabana, 2010, Adv. Mater., 22, 170, 10.1002/adma.201000717
Yuan, 2015, Chem. – Eur. J., 21, 1262, 10.1002/chem.201404624