GaiaEarly Data Release 3

Astronomy and Astrophysics - Tập 649 - Trang A3 - 2021
M. Riello1, F. De Angeli1, C. A. L. Bailer‐Jones1, P. Montegriffo2, J. M. Carrasco3, G. Busso1, L. Palaversa1,4, P. W. Burgess1, E. Distefano1, M. Davidson5, N. Rowell5, C. Fabricius3, C. Jordi3, M. Bellazzini2, E. Pancino6,7, S. Henrot-Versillé1, C. Cacciari2, F. van Leeuwen1, N. C. Hambly5, S. T. Hodgkin1, P. Osborne1, G. Altavilla8,7, M. A. Barstow9, A. G. A. Brown10, M. Castellani8, S. Cowell1, F. De Luise11, G. Gilmore1, G. Giuffrida8, S. L. Hidalgo12, G. Holland1, S. Marinoni8,7, C. Pagani9, A. M. Piersimoni11, L. Pulone8, S. Ragaini2, M. Rainer6, P. J. Richards13, N. Sanna6, N. A. Walton1, M. Weiler3, A. Yoldas1
1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
2INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, 40129 Bologna, Italy
3Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), c/ Martí i Franquès, 1, 08028 Barcelona, Spain
4Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
5Institute for Astronomy, School of Physics and Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
6INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
7Space Science Data Center - ASI, Via del Politecnico SNC, 00133 Roma, Italy
8INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00078 Monte Porzio Catone (Roma), Italy
9School of Physics & Astronomy, University of Leicester, Leicester LE9 1UP, UK
10Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
11INAF - Osservatorio Astronomico d’Abruzzo, Via Mentore Maggini, 64100 Teramo, Italy
12IAC - Instituto de Astrofisica de Canarias, Via Láctea s/n, 38200 La Laguna S.C., Tenerife, Spain
13STFC, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0QX, UK

Tóm tắt

Context. GaiaEarly Data Release 3 (GaiaEDR3) contains astrometry and photometry results for about 1.8 billion sources based on observations collected by the European Space AgencyGaiasatellite during the first 34 months of its operational phase.Aims.In this paper, we focus on the photometric content, describing the input data, the algorithms, the processing, and the validation of the results. Particular attention is given to the quality of the data and to a number of features that users may need to take into account to make the best use of theGaiaEDR3 catalogue.Methods.The processing broadly followed the same procedure as forGaiaDR2, but with significant improvements in several aspects of the blue and red photometer (BP and RP) preprocessing and in the photometric calibration process. In particular, the treatment of the BP and RP background has been updated to include a better estimation of the local background, and the detection of crowding effects has been used to exclude affected data from the calibrations. The photometric calibration models have also been updated to account for flux loss over the whole magnitude range. Significant improvements in the modelling and calibration of theGaiapoint and line spread functions have also helped to reduce a number of instrumental effects that were still present in DR2.Results. GaiaEDR3 contains 1.806 billion sources withG-band photometry and 1.540 billion sources withGBPandGRPphotometry. The median uncertainty in theG-band photometry, as measured from the standard deviation of the internally calibrated mean photometry for a given source, is 0.2 mmag at magnitudeG= 10–14, 0.8 mmag atG≈ 17, and 2.6 mmag atG≈ 19. The significant magnitude term found in theGaiaDR2 photometry is no longer visible, and overall there are no trends larger than 1 mmag mag−1. Using one passband over the whole colour and magnitude range leaves no systematics above the 1% level in magnitude in any of the bands, and a larger systematic is present for a very small sample of bright and blue sources. A detailed description of the residual systematic effects is provided. Overall the quality of the calibrated mean photometry inGaiaEDR3 is superior with respect to DR2 for all bands.

Từ khóa


Tài liệu tham khảo

Aguado, 2019, ApJS, 240, 23, 10.3847/1538-4365/aaf651

Alam, 2015, ApJS, 219, 12, 10.1088/0067-0049/219/1/12

Allard, 2012, Phil. Trans. R. Soc. London, Ser. A, 370, 2765

Altavilla, 2015, Astron. Nachr., 336, 515, 10.1002/asna.201512176

Altavilla, 2021, MNRAS, 501, 2848, 10.1093/mnras/staa3655

Arenou, 2018, A&A, 616, A17, 10.1051/0004-6361/201833234

Artigau É. 2018, Handbook of Exoplanets, eds. Deeg H. J. & Belmonte J. A. (Berlin: Springer), 94

Price-Whelan, 2018, AJ, 156, 123, 10.3847/1538-3881/aac387

Bohlin, 2014, PASP, 126, 711

Bohlin, 2019, AJ, 158, 211, 10.3847/1538-3881/ab480c

Boubert, 2020, MNRAS, 497, 1826, 10.1093/mnras/staa2050

Carrasco, 2016, A&A, 595, A7, 10.1051/0004-6361/201629235

Casagrande, 2018, MNRAS, 479, L102, 10.1093/mnrasl/sly104

Clem, 2013, AJ, 146, 88, 10.1088/0004-6256/146/4/88

de Bruijne, 2015, A&A, 576, A74, 10.1051/0004-6361/201424018

De Marco, 2017, PASA, 34, e001, 10.1017/pasa.2016.52

ESA 1997, ESA SP, 1200

Evans, 2017, A&A, 600, A51, 10.1051/0004-6361/201629241

Evans, 2018, A&A, 616, A4, 10.1051/0004-6361/201832756

Fabricius, 2016, A&A, 595, A3, 10.1051/0004-6361/201628643

Fabricius, 2021, A&A, 649, A5, 10.1051/0004-6361/202039834

Prusti, 2016, A&A, 595, A1, 10.1051/0004-6361/201629272

Eyer, 2019, A&A, 623, A110, 10.1051/0004-6361/201833304

Brown, 2021, A&A, 649, A1, 10.1051/0004-6361/202039657

Górski, 2005, ApJ, 622, 759, 10.1086/427976

Hambly, 2018, A&A, 616, A15, 10.1051/0004-6361/201832716

Henden, 2015, AAS Meeting Abstracts, 225, 336.16

Høg, 2000, A&A, 355, L27

Hunter, 2007, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55

Ivezić, 2007, AJ, 134, 973, 10.1086/519976

Iwanek, 2019, ApJ, 879, 114, 10.3847/1538-4357/ab23f6

Jordi, 2010, A&A, 523, A48, 10.1051/0004-6361/201015441

Khan, 2018, A&A, 615, A115, 10.1051/0004-6361/201732545

Koornneef, 1986, Proc. IAU, 7, 833

Landolt, 1992, AJ, 104, 340, 10.1086/116242

Lindegren L., Klioner S. A., Hernández J., et al. 2021, A&A, 649, A2 (Gaia EDR3 SI)

Liu, 2020, ApJS, 250, 1, 10.3847/1538-4365/aba2c7

Lupton R. 1993, Statistics in Theory and Practice (Princeton: Princeton University Press)

Magnier, 2020, ApJS, 251, 6, 10.3847/1538-4365/abb82a

Maíz Apellániz, 2018, A&A, 619, A180, 10.1051/0004-6361/201834051

Marinoni, 2016, MNRAS, 462, 3616, 10.1093/mnras/stw1886

Mowlavi, 2021, A&A, 648, A44, 10.1051/0004-6361/202039450

Pancino, 2012, MNRAS, 426, 1767, 10.1111/j.1365-2966.2012.21766.x

Pérez, 2007, Comput. Sci. Eng., 9, 21, 10.1109/MCSE.2007.53

Ribas, 2017, A&A, 603, A58, 10.1051/0004-6361/201730582

Riello, 2018, A&A, 616, A3, 10.1051/0004-6361/201832712

Rowell, 2021, A&A, 649, A11, 10.1051/0004-6361/202039448

Skrutskie, 2006, AJ, 131, 1163, 10.1086/498708

Stetson, 2000, PASP, 112, 925, 10.1086/316595

Stetson, 2019, MNRAS, 485, 3042, 10.1093/mnras/stz585

Storn, 1997, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328

Taylor, 2005, ASP Conf. Ser., 347, 29

Torra, 2021, A&A, 649, A10, 10.1051/0004-6361/202039637

van Leeuwen, 2017, A&A, 599, A32, 10.1051/0004-6361/201630064

Weiler, 2018, A&A, 617, A138, 10.1051/0004-6361/201833462

Weiler, 2018, A&A, 615, A24, 10.1051/0004-6361/201732489

Wenger, 2000, A&AS, 143, 9, 10.1051/aas:2000332