“Why are we learning this?!” — Investigating students’ subjective study values across different disciplines
Tóm tắt
Differences between academic disciplines have been a well-studied theme in higher education research. But even though students’ subjective study values are a key factor for successful studying, research examining their disciplinary differences in the higher education context is lacking. To address this, this study draws on expectancy-value theory, investigates students’ subjective study values across nine different disciplines, and analyses its discipline-specific relation to study success. For this, we used a large-scale data sample of N = 6.321 university students from the German National Educational Panel Study. Subjective study values were assessed in terms of intrinsic values, utility values, attainment values, and costs, while study success was captured by students’ grade and dropout intention. Data were analysed through multi-group structural equation modelling. Our findings suggest that (1) students’ subjective study values differ markedly across academic disciplines and (2) study disciplines moderate the relation between study values and study success. On a research level, our findings contribute to a more differentiated view on subjective study values in the higher education context. On a practical level, our findings can help to uncover motivational problems of students from different disciplines, which might ultimately help to reduce dropouts and improve grades.
Từ khóa
Tài liệu tham khảo
Badcock, P. B., Pattison, P. E., & Harris, K. L. (2010). Developing generic skills through university study: A study of arts, science and engineering in Australia. Higher Education, 60, 441–458. https://doi.org/10.1007/s10734-010-9308-8
Beaujean, A. A. (2014). Latent variable modeling using R: A step by step guide. Routledge. https://doi.org/10.4324/9781315869780
Blossfeld, H. P., & Rossbach, H. G. (Eds.). (2019). Education as a Lifelong Process: The German National Educational Panel Study (NEPS). Edition ZfE (2nd ed.). Springer VS.
Bohndick, C., Rosman, T., Kohlmeyer, S., & Buhl, H. M. (2018). The interplay between subjective abilities and subjective demands and its relationship with academic success. An application of the person–environment fit theory. Higher Education, 75(5), 839–854. https://doi.org/10.1007/s10734-017-0173-6
Briedis, K., Fabian, G., Kerst, C., & Schaeper, H. (2008). Berufsverbleib von Geisteswissenschaftlerinnen und Geist4eswissenschaftlern. HIS GmbH.
Chen, F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Davies, P., Mangan, J., Hughes, A., & Slack, K. (2013). Labour market motivation and undergraduates’ choice of degree subject. British Educational Research Journal, 39(2), 1–22. https://doi.org/10.1080/01411926.2011.646239
Destatis. (2010). Bildung und Kultur: Studierende an Hochschulen. Retrieved August 1, 2022, from https://www.statistischebibliothek.de/mir/servlets/MCRFileNodeServlet/DEHeft_derivate_00006845/2110410117004.pdf
Eccles, J. S., Adler, T., Futterman, R., Goff, S. B., Kaczala, C. M., & Meece, J. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motivation (pp. 75–146). W. H. Freeman.
Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary Educational Psychology, 61, 101859. https://doi.org/10.1016/j.cedpsych.2020.101859
Gaspard, H., Häfner, I., Parrisius, C., Trautwein, U., & Nagengast, B. (2017). Assessing task values in five subjects during secondary school: Measurement structure and mean level differences across grade level, gender, and academic subject. Contemporary Educational Psychology, 48, 67–84. https://doi.org/10.1016/j.cedpsych.2016.09.003
Heublein, U., Ebert, J., Hutzsch, C., & Isleib, S. (2017). Zwischen Studienerwartungen und Studienwirklichkeit: Ursachen des Studienabbruchs, beruflicher Verbleib der Studienabbrecherinnen und Studienabbrecher und Entwicklung der Studienabbruchquote an deutschen Hochschulen. Deutsches Zentrum für Hochschul- und Wissenschaftsforschung GmbH.
Hochschulrektorenkonferenz. (2021). Statistische Daten zu Studienangeboten an Hochschulen in Deutschland. Studiengänge, Studierende, Absolventinnen und Absolventen. Wintersemester 2021/2022. HRK.
Hulleman, C. S., & Harackiewicz, J. M. (2021). The utility-value intervention. In G. M. Walton & A. J. Crum (Eds.), Handbook of wise interventions: How social psychology can help people change (pp. 100–125). Guilford Press.
Hüther, O., & Krücken, G. (2018). Higher education in Germany: Recent developments in an international perspective (Vol. 49). Springer.
Janke, S., & Dickhäuser, O. (2019). Different major, different goals: University students studying economics differ in life aspirations and achievement goal orientations from social science students. Learning and Individual Differences, 73, 138–146. https://doi.org/10.1016/j.lindif.2019.05.008
Kegel, L. S., Schnettler, T., Scheunemann, A., Bäulke, L., Thies, D. O., Dresel, M., Fries, S. & Leutner, D. (2021). Unterschiedlich motiviert für das Studium: Motivationale Profile von Studierenden und ihre Zusammenhänge mit demografischen Merkmalen, Lernverhalten und Befinden. ZeHf–Zeitschrift für empirische Hochschulforschung, 4(1), 13–14. https://doi.org/10.3224/zehf.v4i1.06
Kosovich, J. J., Flake, J. K., & Hulleman, C. S. (2017). Short-term motivation trajectories: A parallel process model of expectancy-value. Contemporary Educational Psychology, 49, 130–139. https://doi.org/10.1016/j.cedpsych.2017.01.004
Kuteeva, M., & Airey, J. (2014). Disciplinary differences in the use of English in higher education: Reflections on recent language policy developments. Higher Education, 67(5), 533–549. https://doi.org/10.1007/s10734-013-9660-6
LIfBi. (2022). National Educational Panel Study (NEPS). University of Bamberg. Retrieved August 1, 2022, from https://www.neps-data.de/Datenzentrum/%C3%9Cbersichten-und-Hilfen/NEPSplorer#/search/sc=5&y=-1&cl=226,224,1918,618
Luong, R., & Flake, J. K. (2021). Measurement invariance testing using confirmatory factor analysis and alignment optimization: A tutorial for transparent analysis planning and reporting. Psychological Methods. Advance online publication. https://doi.org/10.31234/osf.io/qr32u
Messerer, L. A., Karst, K., & Janke, S. (2023). Choose wisely: Intrinsic motivation for enrollment is associated with ongoing intrinsic learning motivation, study success and dropout. Studies in Higher Education, 48(1), 137–150. https://doi.org/10.1080/03075079.2022.2121814
Metzger, C., & Schulmeister, R. (2011). Die tatsächliche Workload im Bachelorstudium. Eine empirische Untersuchung durch Zeitbudget-Analysen. In S. Nickel (Hrsg.), Der Bologna-Prozess aus Sicht der Hochschulforschung. Analysen und Impulse für die Praxis (S.68–78). CHE.
Metzger, C., & Schulmeister, R. (2020). Zum Lernverhalten im Bachelorstudium. Zeitbudget-Analysen studentischer Workload im ZEITLast-Projekt. In Studentischer Workload (pp. 233–251). Springer VS. https://doi.org/10.1007/978-3-658-28931-7_9
NEPS Network. (2021). National educational panel study, scientific use file of starting cohort first-year students. https://doi.org/10.5157/NEPS:SC5:15.0.0
Neumann, R. (2001). Disciplinary differences and university teaching. Studies in Higher Education, 26(2), 135–146. https://doi.org/10.1080/03075070120052071
Part, R., Perera, H. N., Marchand, G. C., & Bernacki, M. (2020). Revisiting the dimensionality of subjective task value: Towards clarification of competing perspectives. Contemporary Educational Psychology, 62, 101875. https://doi.org/10.1016/j.cedpsych.2020.101875
Porter, S. R., & Umbach, P. D. (2006). College major choice: An analysis of person–environment fit. Research in Higher Education, 47(4), 429–449. https://doi.org/10.1007/s11162-005-9002-3
R Core Team. (2023). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 12 June 2023
Robinson, K. A., Lee, Y., Bovee, E. A., Perez, T., Walton, S. P., Briedis, D., & Linnenbrink-Garcia, L. (2019). Motivation in transition: Development and roles of expectancy, task values, and costs in early college engineering. Journal of Educational Psychology, 111(6), 1081–1102. https://doi.org/10.1037/edu0000331
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
Rump, M., Esdar, W., & Wild, E. (2017). Individual differences in the effects of academic motivation on higher education students’ intention to drop out. European Journal of Higher Education, 7(4), 341–355. https://doi.org/10.1080/21568235.2017.1357481
Schiefele, U., Moschner, B., & Husstegge, R. (2002). Skalenhandbuch SMILE-Projekt. Bielefeld: Universität Bielefeld, Abteilung für Psychologie.
Schiefele, U., Streblow, L., & Brinkmann, J. (2007). Aussteigen oder Durchhalten. Zeitschrift Für Entwicklungspsychologie Und Pädagogische Psychologie, 39(3), 127–140. https://doi.org/10.1026/0049-8637.39.3.127
Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and implications. Human Resource Management Review, 18(4), 210–222. https://doi.org/10.1016/j.hrmr.2008.03.003
Schnettler, T., Bobe, J., Scheunemann, A., Fries, S., & Grunschel, C. (2020). Is it still worth it? Applying expectancy-value theory to investigate the intraindividual motivational process of forming intentions to drop out from university. Motivation and Emotion, 44(4), 491–507. https://doi.org/10.1007/s11031-020-09822-w
Schnettler, T., Scheunemann, A., Bäulke, L., Thies, D. O., Kegel, L., Bobe, J., Dresel, M., Fries, S., Leutner, D., Wirth, J., & Grunschel, C. (2022). Dimensionality and dynamics of student motivation from the perspective of situated expectancy-value theory in Higher Education. Manuscript submitted for publication.
Schubarth, W., Speck, Ulbricht, K, Dudziak, J., & Zylla, B. (2014). Employability und Praxisbezüge im wissenschaftlichen Studium. Berlin: Hochschulrektorenkonferenz.
Shekhar, C., & Devi, R. (2012). Achievement motivation across gender and different academic majors. Journal of Educational and Developmental Psychology, 2(2). https://doi.org/10.5539/jedp.v2n2p105
Trautwein, U., Jonkmann, K., Gresch, C., Lüdtke, O., Neumann, M., Klusmann, U., & Baumert, J. (2007). Transformation des Sekundarschulsystems und akademische Karrieren (TOSCA). Dokumentation der eingesetzten Items und Skalen, Welle 3. Berlin: Max Planck Institute for Human Development.
University of Bremen. (2017). Notenumrechnung bei der Anerkennung von Prüfungsleistungen durch den Prüfungsausschuss am FB6. Retrieved August 1, 2022, from https://www.uni-bremen.de/fileadmin/user_upload/sites/zpa/pdf/Jura/Hauptstudium/JUR_Staatsexamen_Notenumrechnung_bei_Anerkennung_von_Pruefungsleistungen.pdf
Upadyay, & Tiwari. (2009). Achievement motivation across different academic majors. Indian Journal of Social Science Researches, 6(2), 128–132.
Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4–70. https://doi.org/10.1177/109442810031002
Wang, W. C., Wilson, M., & Shih, C. L. (2006). Modeling randomness in judging rating scales with a random-effects rating scale model. Journal of Educational Measurement, 43(4), 335–353.
Wu, F., Fan, W., Arbona, C., & de La Rosa-Pohl, D. (2020). Self-efficacy and subjective task values in relation to choice, effort, persistence, and continuation in engineering: An Expectancy-value theory perspective. European Journal of Engineering Education, 45(1), 151–163. https://doi.org/10.1080/03043797.2019.1659231
Ylijoki, O.-H. (2000). Disciplinary cultures and the moral order of studying- A case-study of four Finnish university departments. Higher Education, 39(3), 339–362.