“Vascular inflammation and cardiovascular disease: review about the role of PET imaging”

Antonio Maria Sammartino1, Raffaele Falco1, Andrea Drera1, Francesco Dondi2, Pietro Bellini2, Francesco Bertagna2, Enrico Vizzardi1
1Institute of Cardiology, Department of Medical and Surgical specialties, Radiological sciences and Public Health, ASST Spedali Civili, University of Brescia, Brescia, Italy
2Nuclear Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Di Brescia, University of Brescia, Brescia, Italy

Tóm tắt

AbstractInflammation characterizes all stages of atherothrombosis and provides a critical pathophysiological link between plaque formation and its acute rupture, leading to coronary occlusion and heart attack. In the last 20 years the possibility of quantifying the degree of inflammation of atherosclerotic plaques and, therefore, also of vascular inflammation aroused much interest. 18Fluoro-deoxy-glucose photon-emissions-tomography (18F-FDG-PET) is widely used in oncology for staging and searching metastases; in cardiology, the absorption of 18F-FDG into the arterial wall was observed for the first time incidentally in the aorta of patients undergoing PET imaging for cancer staging. PET/CT imaging with 18F-FDG and 18F-sodium fluoride (18F-NaF) has been shown to assess atherosclerotic disease in its molecular phase, when the process may still be reversible. This approach has several limitations in the clinical practice, due to lack of prospective data to justify their use routinely, but it’s desirable to develop further scientific evidence to confirm this technique to detect high-risk patients for cardiovascular events.

Từ khóa


Tài liệu tham khảo

Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874. https://doi.org/10.1038/nature01323

Ley K, Miller YI, Hedrick CC (2011) Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 31:1506. https://doi.org/10.1161/ATVBAHA.110.221127

Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27:2292. https://doi.org/10.1161/ATVBAHA.107.149179

Woollard KJ et al (2010) Monocytes in atherosclerosis: Subsets and functions. Nat Rev Cardiol 7(2):77–86. https://doi.org/10.1038/nrcardio.2009.228

Hutcheson JD, Goettsch C, Bertazzo S et al (2016) Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater 15:335–343. https://doi.org/10.1038/nmat4519

Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. NEJM 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368:2004–2013. https://doi.org/10.1056/NEJMra1216063

Gomes A, Glaudemans A, Touw DJ et al (2017) Diagnostic value of imaging in infective endocarditis: a systematic review. Lancet Infect Dis 17(1):e1–e14. https://doi.org/10.1016/S1473-3099(16)30141-4

Casali M, Lauri C, Altini C et al (2021) State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation. Clin Transl Imaging 9(4):299–339. https://doi.org/10.1007/s40336-021-00445-w

Juneau D, Golfam M, Hazra S et al (2017) Positron emission tomography and single-photon emission computed tomography imaging in the diagnosis of cardiac implantable electronic device infection: a systematic review and meta-analysis. Circ Cardiovasc Imaging 10(4):e005772. https://doi.org/10.1161/CIRCIMAGING.116.005772

Ploux S, Riviere A, Amraoui S et al (2011) Positron emission tomography in patients with suspected pacing system infections may play a critical role in difficult cases. Heart Rhythm 8(9):1478–1481. https://doi.org/10.1016/j.hrthm.2011.03.062

Treglia G, Annunziata S, Sobic-Saranovic D et al (2014) The role of 18F-FDG-PET and PET/CT in patients with sarcoidosis: an updated evidence-based review. Acad Radiol 21:675–684

Ahmadian A, Brogan A, Berman J et al (2014) Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 21:925–939

Blankstein R, Osborne M, Naya M et al (2014) Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 63:329–336

Pelletier-Galarneau M, Ruddy TD (2019) PET/CT for diagnosis and management of large-vessel vasculitis. Curr Cardiol Rep 21(5):34. https://doi.org/10.1007/s11886-019-1122-z

Soussan M, Nicolas P, Schramm C et al (2015) Management of large-vessel vasculitis with FDG-PET: a systematic literature review and meta-analysis. Medicine (Baltimore) 94(14):e622. https://doi.org/10.1097/MD.0000000000000622

Le Guludec D, Lautamäki R, Knuuti J et al (2008) Present and future of clinical cardiovascular PET imaging in Europe—a position statement by the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 35(9):1709–1724. https://doi.org/10.1007/s00259-008-0859-1

Skagen K, Johnsrud K, Evensen K et al (2015) Carotid plaque inflammation assessed with (18)F-18F-FDG PET/CT is higher in symptomatic compared with asymptomatic patients. Int J Stroke 10(5):730–736. https://doi.org/10.1111/ijs.12430

Rudd JHF, Narula J, William Strauss H et al (2010) Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol 55(23):2527–2535. https://doi.org/10.1016/j.jacc.2009.12.061

Gaemperli O, Boyle JJ, Rimoldi OE et al (2010) Molecular imaging of vascular inflammation. Eur J Nucl Med Mol Imaging 37:1236. https://doi.org/10.1007/s00259-009-1371-y

Syed MB, Fletcher AJ, Forsythe RO et al (2019) Emerging techniques in atherosclerosis imaging. Br J Radiol 92(1103):20180309. https://doi.org/10.1259/bjr.20180309

Takx RA, Partovi S, Ghoshhajra BB (2016) Imaging of atherosclerosis. Int J Cardiovasc Imaging 32:5–12. https://doi.org/10.1007/s10554-015-0730-y

Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451(7181):953–957. https://doi.org/10.1038/nature06803

Grammaticos PC (2014) Diagnosing atherosclerosis makes nuclear medicine a tissue imaging modality. Hell J Nucl Med 17(1):12

Buscombe JR (2015) Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET). Br J Radiol 88(1053):20140648. https://doi.org/10.1259/bjr.20140648

Ogawa M, Ishino S, Mukai T et al (2004) (18)F-18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 45(7):1245–1250

Leppänen O, Björnheden T, Evaldsson M et al (2006) ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis 188(2):323–330. https://doi.org/10.1016/j.atherosclerosis.2005.11.017

Tawakol A, Migrino RQ, Hoffmann U et al (2005) Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 12(3):294–301. https://doi.org/10.1016/j.nuclcard.2005.03.002

Tawakol A et al (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48(9):1818–1824. https://doi.org/10.1016/j.jacc.2006.05.076

Duivenvoorden R, Mani V, Woodward M et al (2013) Relationship of serum inflammatory biomarkers with plaque inflammation assessed by 18F-FDG PET/CT: the dal-PLAQUE study. JACC Cardiovasc Imaging 6(10):1087–1094. https://doi.org/10.1016/j.jcmg.2013.03.009

Tahara N, Kai H, Yamagishi S et al (2007) Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 49(14):1533–1539. https://doi.org/10.1016/j.jacc.2006.11.046

Al-Zaghal A, Raynor W, Khosravi M et al (2018) Applications of PET imaging in the evaluation of musculoskeletal diseases among the geriatric population. Semin Nucl Med 48(6):525–534. https://doi.org/10.1053/j.semnuclmed.2018.07.002

Paydary K, Revheim M-E, Emamzadehfard S et al (2020) Quantitative thoracic aorta calcification assessment by (18)F-18F-NaF PET/CT and its correlation with atherosclerotic cardiovascular disorders and increasing age. Eur Radiol 31(2):785–794. https://doi.org/10.1007/s00330-020-07133-9

Raynor WY, Borja J, Rojulpote C et al (2021) 18-sodium fluoride: an emerging tracer to assess active vascular microcalcification. J Nucl Cardiol 28(6):2706–2711. https://doi.org/10.1007/s12350-020-02138-9

Fujimoto K, NorikanE T, YamamotO Y et al (2019) Association between carotid (18)F-18F-NaF and (18)F-18F-FDG uptake on PET/CT with ischemic vascular brain disease on MRI in patients with carotid artery disease. Ann Nucl Med 33(12):907–915. https://doi.org/10.1007/s12149-019-01403-3

McKenney-Drake ML, Moghbel MC, PaydarY K et al (2018) (18)F-18F-NaF and (18)F-18F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging 45(12):2190–2200. https://doi.org/10.1007/s00259-018-4078-0

Alavi A, Werner TJ, Raynor W et al (2021) Critical review of PET imaging for detection and characterization of the atherosclerotic plaques with emphasis on limitations of 18F-FDG-PET compared to 18F-NaF-PET in this setting. Am J Nucl Med Mol Imaging 15(11):337–351

Piri R, Gauher Lici G, Riyahimanesh P et al (2021) Two-year change in 18F-sodium fluoride uptake in major arteries of healthy subjects and angina pectoris patients. Int J Cardiovasc Imaging 37(10):3115–3126. https://doi.org/10.1007/s10554-021-02263-7

Høilund-Carlsen PF, Piri R, Constantinescu C et al (2020) Atherosclerosis Imaging with 18F-Sodium Fluoride PET. Diagnostics 10(10):852. https://doi.org/10.3390/diagnostics10100852

Arani LS, Gharavi MH, Zadeh MZ et al (2019) Association between age, uptake of 18F-fluorodeoxyglucose and of 18F-sodium fluoride, as cardiovascular risk factors in the abdominal aorta. Hell J Nucl Med 22(1):14–19. https://doi.org/10.1967/s002449910954

Sorci O, Batzdorf AS, Mayeret M et al (2020) 18F-sodium fluoride PET/CT provides prognostic clarity compared to calcium and Framingham risk scoring when addressing whole-heart arterial calcification. Eur J Nucl Med Mol Imaging 47(7):1678–1687. https://doi.org/10.1007/s00259-019-04590-3

Aziz K, Berger K, Claycombe K et al (2008) Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation 117(16):2061–2070. https://doi.org/10.1161/CIRCULATIONAHA.106.652313

Arauz A, Hoyos L, Zenteno M et al (2007) Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 109(5):409–412. https://doi.org/10.1016/j.clineuro.2007.02.012

McCabe JJ, Pol C-R, Giannotti N et al (2021) Carotid plaque inflammation imaged by PET and prediction of recurrent stroke at 5 years. Neurology 97(23):e2282–e2291. https://doi.org/10.1212/WNL.0000000000012909

Rominger A, Saam T, Wolpers S et al (2009) 18F–18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 50(10):1611–1620. https://doi.org/10.2967/jnumed.109.065151

van der Valk FM, Verweij SL, Zwinderman KAH et al (2016) Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging: implications for vascular interventional studies. JACC: Cardiovasc Imaging 9(10):1198–1207. https://doi.org/10.1016/j.jcmg.2016.04.007

Bural GG, Torigian DA, Sözmen M et al (2018) Comparison of atherosclerotic inflammation and calcification in subjects with end stage renal disease (ESRD) on hemodialysis to normal controls utilizing (18)F-18F-FDG PET/CT. Hell J Nucl Med 21(3):169–174. https://doi.org/10.1967/s002449910901

Vanfleteren LE, van Meerendonk AMG, Franssen FM et al (2014) A possible link between increased metabolic activity of fat tissue and aortic wall inflammation in subjects with COPD. A retrospective 18F–18F-FDG-PET/CT pilot study. Respir Med 108:883–890. https://doi.org/10.1016/j.rmed.2014.04.001

Joshi AA, Lerman JB, Dey AK et al (2018) Association between aortic vascular inflammation and coronary artery plaque characteristics in psoriasis. JAMA Cardiol 3(10):949–956. https://doi.org/10.1001/jamacardio.2018.2769

Watanabe T, Kawasaki M, Tanaka R et al (2015) Anti-inflammatory and morphologic effects of pitavastatin on carotid arteries and thoracic aorta evaluated by integrated backscatter trans-esophageal ultrasound and PET/CT: a prospective randomized comparative study with pravastatin (EPICENTRE study). Cardiovasc Ultrasound 2(13):17. https://doi.org/10.1186/s12947-015-0012-9

Mizoguchi M, Tahara N, Tahara A et al (2011) Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial 18F-FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging 4(10):1110–1118. https://doi.org/10.1016/j.jcmg.2011.08.007

Ridker PM, Thuren T, Zalewski A et al (2011) Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162:597–605

Tardif JC, Kouz S, Waters DD et al (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497–2505. https://doi.org/10.1056/NEJMoa1912388

Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48(9):1825–1831. https://doi.org/10.1016/j.jacc.2006.03.069

Tawakol A, Fayad ZA, Mogg R et al (2013) Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: Results of a Multicenter Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Feasibility Study. J Am Coll Cardiol 62(10):909–917. https://doi.org/10.1016/j.jacc.2013.04.066

Cannon CP, Braunwald E, McCabe CH et al (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

Ray KK, Cannon CP, McCabe CH et al (2005) for the PROVE IT-TIMI 22 investigators early and late benefits of high-dose atorvastatin in patients with acute coronary syndromes: results from the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 46:1405–1410

Thuy Trang DAMT, Okamura K, Suto T et al (2021) Do biologic therapies reduce aortic inflammation in rheumatoid arthritis patients? Arthritis Res Ther 23(1):206. https://doi.org/10.1186/s13075-021-02585-w

Kaijasilta J-P, Kerola AM, Tuompo R et al (2022) Adalimumab and sulfasalazine in alleviating sacroiliac and aortic inflammation detected in PET/CT in patients with axial spondyloarthritis: PETSPA. Immun Inflamm Dis 10(2):155–162. https://doi.org/10.1002/iid3.552

Jensen JK, Binderup T, Grandjean CE et al (2022) Semaglutide reduces vascular inflammation investigated by PET in a rabbit model of advanced atherosclerosis. Atherosclerosis 352:88–95. https://doi.org/10.1016/j.atherosclerosis.2022.03.032

Camici PG, Rimoldi QE, Gaemperli O, Libby P et al (2012) Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J 33(11):1309–1317. https://doi.org/10.1093/eurheartj/ehs067

Alavi A, Werner TJ, Raynor W et al (2021) Critical review of PET imaging for detection and characterization of the atherosclerotic plaques with emphasis on limitations of 18F-FDG-PET compared to 18F-NaF-PET in this setting. Am J Nucl Med Mol Imaging 11(5):337–351

Folco EJ, Sheikine Y, Rocha VZ et al (2011) Hypoxia but not inflammation augments glucose uptake in human macrophages. Implications for imaging atherosclerosis with 18F-FDG-PET. J Am Coll Cardiol 58(6):603–614. https://doi.org/10.1016/j.jacc.2011.03.044

Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50(4):563–568. https://doi.org/10.2967/jnumed.108.055616

Dunphy MP, Freiman A, Larson SM et al (2005) Association of vascular 18F-18F-FDG uptake with vascular calcification. J Nucl Med 46(8):1278–1284

Rogers IS, Nasir K, Figueroa AL et al (2010) Feasibility of 18F-FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 3(4):388–397. https://doi.org/10.1016/j.jcmg.2010.01.004

Joshi NV, Vesey AT, Williams MC et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713. https://doi.org/10.1016/S0140-6736(13)61754-7

Dweck MR, Chow MWL, Joshi NV et al (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59(17):1539–1548. https://doi.org/10.1016/j.jacc.2011.12.037

Nakahara T, Dweck MR, Narula N et al (2017) Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging 10(5):582–593

Blomberg BA, Thomassen A, Takx RAP et al (2014) Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol 21(3):588–597. https://doi.org/10.1007/s12350-014-9884-6

Blomberg BA, de Jong PA, Thomassen A et al (2017) Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging 44(2):249–258. https://doi.org/10.1007/s00259-016-3552-9

Senders M, Hernot S, Carlucci G et al (2019) Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc Imaging 12:2015–2026. https://doi.org/10.1016/j.jcmg.2018.07.027

Gaemperli O, Shalhoub J, Owen D et al (2012) Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J 33:1902–1910. https://doi.org/10.1093/eurheartj/ehr367

Luehmann H, Detering L, Gropler RJ et al (2017) C–C chemokine receptor type 2 (CCR2) targeted PET imaging of early atherosclerosis. Circ Am Heart Assoc 136:A20674

Woodard PK, Liu Y, Pressly ED et al (2016) Design and modular construction of a polymeric nanoparticle for targeted atherosclerosis positron emission tomography imaging: a story of 25% (64)Cu-CANF-Comb. Pharm Res 33:2400–2410. https://doi.org/10.1007/s11095-016-1963-8

Prigentl K, Vigne J (2021) Advances in radiopharmaceutical sciences for vascular inflammation imaging: focus on clinical applications. Molecules 26(23):7111. https://doi.org/10.3390/molecules26237111