‘Shut up and contemplate!’: Lucien Hardy׳s reasonable axioms for quantum theory
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics - Tập 52 - Trang 328-342 - 2015
Tài liệu tham khảo
Birkhoff, 1936, The logic of quantum mechanics, Annals of Mathematics, 37, 823, 10.2307/1968621
Chiribella, 2011, Informational derivation of quantum theory, Physical Review A, 84, 012311, 10.1103/PhysRevA.84.012311
Clifton, 2003, Characterizing quantum theory in terms of information-theoretic constraints, Foundations of Physics, 33, 1561, 10.1023/A:1026056716397
Comte, 1996, Symmetry, relativity and quantum mechanics, Il Nuovo Cimento, 111B, 937, 10.1007/BF02743290
Dakić, Borivoje & Časlav, Brukner (2009). Quantum theory and beyond: Is entanglement special? 〈http://www.elsevier.com/xml/linking-roles/preprintarXiv:0911.0695v1〉 [quant-ph] 3 November 2009.
Dakić, 2011, Quantum theory and beyond: Is entanglement special?, 365
Dalla, 2007, The history of quantum logic, 11 vols, 2004–2011, 205
Darrigol, 2014
Deutsch, 2003, It from qubit, 90
Fivel, 1994, How interference effects in mixtures determine the rules of quantum mechanics, Physical Review A, 50, 2108, 10.1103/PhysRevA.50.2108
Fuchs, 2003, Quantum mechanics as quantum information, mostly, Journal of Modern Optics, 50, 987, 10.1080/09500340308234548
2009
Grinbaum, 2003, Elements of information-theoretic derivation of the formalism of quantum theory, International Journal of Quantum Information, 1, 289, 10.1142/S0219749903000309
Grinbaum, 2004
Grinbaum, 2007, Reconstruction of quantum theory, British Journal for the Philosophy of Science, 58, 387, 10.1093/bjps/axm028
Hardy, Lucien (2001). Quantum theory from five reasonable axioms. 〈http://www.elsevier.com/xml/linking-roles/preprintarXiv:quant-ph/0101012〉 [25 Sep 2001; I have mostly used version 4, which dates from 1 Feb 2008].
Hardy, 2002, Why quantum theory?, 61
Hardy, 2004, Quantum ontological excess baggage, Studies in History and Philosophy of Modern Physics, 35, 267, 10.1016/j.shpsb.2003.12.001
Hardy, Lucien (2005). Probability theories with dynamic causal structure: A new framework for quantum gravity. 〈http://www.elsevier.com/xml/linking-roles/preprintarXiv:gr-qc/0509120〉.
Hardy, 2007, Towards quantum gravity: A framework for probabilistic theories with non-fixed causal structure, Journal of Physics A, 40, 3081, 10.1088/1751-8113/40/12/S12
Hardy, Lucien (2011). Reformulating and reconstructing quantum theory. 〈http://www.elsevier.com/xml/linking-roles/preprintarXiv:1104.2066〉.
Hardy, Lucien, & Spekkens, Robert (2010). Why physics needs quantum foundations. 〈http://www.elsevier.com/xml/linking-roles/preprintarXiv:1003.5008〉.
Hunziker, 1972, A note on symmetry operations in quantum mechanics, Helvetica Physica Acta, 45, 233
Kadison, 1951, Isometries of operator algebras, Annals of Mathematics, 54, 325, 10.2307/1969534
Kaiser, 2011
Ludwig, 1983
Ludwig, 1985
Mackey, 1957, Quantum mechanics and Hilbert space, American Mathematical Monthly, Supplement 64, S45, 10.2307/2308516
Mackey, 1963
Masanes, Lluís, & Müller, Markus (2010). A derivation of quantum theory from physical requirements.〈http://www.elsevier.com/xml/linking-roles/preprintarXiv:1004.1483v2〉 [quant-ph] 5 Oct 2010.
Mermin, 1989, What׳s wrong with this pillow?, Physics Today, 42, 9, 10.1063/1.2810963
Piron, 1964, Axiomatique quantique, Helvetica Physica Acta, 37, 439
Piron, 1976
Rovelli, 1996, Relational quantum mechanics, International Journal of Theoretical Physics, 35, 1637, 10.1007/BF02302261
Schrödinger, Erwin (1935). Discussion of probability relations between separated systems. Proceedings of the Cambridge Philosophical Society, 31, 555–563; 32 (1936), 446–451
Wheeler, 1990, Information, physics, quantum: The search for links (pp. 3–28).
Wilce, Alexander (2009) Quantum logic and probability theory. In Edward N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2009 Edition). 〈http://plato.stanford.edu/archives/spr2009/entries/qt-quantlog/〉 (last accessed January 2013).
Zeilinger, 1999, A foundational principle for quantum theory, Foundations of Physics, 29, 631, 10.1023/A:1018820410908