(R)-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus Replication: an In Silico Assessment

Revista Brasileira de Farmacognosia - Tập 33 Số 3 - Trang 543-550
Christy Rani Arokia Samy1, Kalaimathi Karunanithi2, Jayasree Sheshadhri3, B. Kaleeswaran4, S. Prabhu5, Pinkie Cherian6
1Department of Chemistry, Thiru. Vi. Ka. Government Arts College, Kidarankondan, Thiruvarur, Tamil Nadu, India, 610 003
2Department of Chemistry, Government College of Engineering, Sengipatti, Thanjavur, Tamil Nadu, India, 613 402
3Department of Chemistry, Prince Shri Venkateshwara Padmavathy Engineering College, Ponmar, Chennai, 600 127, India
4Department of Zoology, Annai Vailankanni Arts and Science College, Bishop Sundaram Campus, Thanjavur, Tamil Nadu, 613 007, India
5Department of Botany, Annai Vailankanni Arts and Science College, Bishop Sundaram Campus, Thanjavur, Tamil Nadu, 613 007, India
6Department of Botany, St Joseph’s College for Women, Alappuzha, Kerala, 688 001, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ansari Dogaheh M, Sharififar F, Arabzadeh AM, Shakibaic M, Heidarbeigi M (2013) Inhibitory effect of a standard extract of Zhumeria majdae Rech. F and Wendelbo. against herpes simplex-1 virus. J Med Sci 13:755–760. https://doi.org/10.3923/jms.2013.755.760

Baba S, Osakabe N, Natsume M, Terao J (2004) Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma and is degraded and metabolized to conjugated forms of cafeic acid, ferulic acid and m-coumaric acid. Life Sci 75:165–178. https://doi.org/10.1016/j.lfs.2003.11.028

Ben Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res 10:354–367. https://doi.org/10.1007/s13346-019-00691-6

Card GL, Knowles P, Laman H, Jones N, McDonald NQ (2000) Crystal structure of a gamma-herpesvirus cyclin-cdk complex. EMBO J 19:2877–2888. https://doi.org/10.1093/emboj/19.12.2877

Chung YC, Hsieh FC, Lin YJ, Wu TY, Lin CW, Lin CT, Tang NY, Jinn TR (2015) Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Euro J Pharmacol 755:127–133. https://doi.org/10.1016/j.ejphar.2015.02.046

Edeling MA, Diamond MS, Fremont DH (2014) Structural basis of flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci 111:4285–4290. https://doi.org/10.1073/pnas.1322036111

Fecka I, Turek S (2007) Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. J Agric Food Chem 55:10908–10917. https://doi.org/10.1021/jf072284d

Gordo J, Máximo P, Cabrita E, Lourenço A, Oliva A, Almeida J, Filipe M, Cruz P, Barcia R, Santos M, Cruz H (2012) Thymus mastichina: chemical constituents and their anti-cancer activity. Nat Prod Commun 7:1491–1494

Guan H, Luo W, Bao B, Cao Y, Cheng F, Yu S, Fan Q, Zhang L, Wu Q, Shan M (2022) A comprehensive review of rosmarinic acid: from phytochemistry to pharmacology and its new insight. Molecules 27:3292. https://doi.org/10.3390/molecules27103292

Hsu YC, Cheng CP, Chang DM (2011) Plectranthus amboinicus attenuates inflammatory bone erosion in mice with collagen-induced arthritis by downregulation of RANKL-induced NFATc1 expression. J Rheumatol 38:1844–1857. https://doi.org/10.3899/jrheum.101223

Kalaimathi K, Thiyagarajan G, Vijayakumar S, Bhavani K, Karthikeyan K, Rani JM, Dass K, Sureshkumar J, Prabhu S (2021) Molecular docking and network pharmacology-based approaches to explore the potential of terpenoids for Mycobacterium tuberculosis. Pharmacol Res Mod Chin Med 1:100002. https://doi.org/10.1016/j.prmcm.2021.100002

Kalaimathi K, Rani JMJ, Vijayakumar S, Prakash N, Karthikeyan K, Thiyagarajan G, Bhavani K, Prabhu S, Varatharaju G (2022) Anti-dengue potential of mangiferin: intricate network of dengue to human genes. Rev Bras Farmacogn 32:410–420. https://doi.org/10.1007/s43450-022-00258-6

Lin WY, Yu YJ, Jinn TR (2019) Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol J 16:94. https://doi.org/10.1186/s12985-019-1203-z

Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S (2020) A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 11:153. https://doi.org/10.3389/fphar.2020.00153

Nolkemper S, Reichling J, Stintzing FC, Carle R, Schnitzler P (2006) Antiviral effect of aqueous extracts from species of the Lamiaceae family against herpes simplex virus type 1 and type 2 in vitro. Planta Med 72:1378–1382. https://doi.org/10.1055/s-2006-951719

Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM (2022) Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 45:205–228. https://doi.org/10.1007/s12272-022-01378-2

Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Govindan N (2017) Homology modeling and molecular docking studies on type II diabetes complications reduced PPAR γreceptor with various ligand molecules. Biomed Pharmaco 92:528–535. https://doi.org/10.1016/j.biopha.2017.05.077

Prabhu S, Vijayakumar S, Praseetha P (2022) Cyanobacterial metabolites as novel drug candidatesin corona viral therapies: a review. Chronic Dis Transl Med 8:172–183. https://doi.org/10.1002/cdt3.11

Rani JM, Kalaimathi K, Vijayakumar S, Varatharaju G, Karthikeyan K, Thiyagarajan G, Bhavani K, Manogar P, Prabhu S (2022) Anti-viral effectuality of plant polyphenols against mutated dengue protein NS2B47-NS3: a computational exploration. Gene Rep 27:101546. https://doi.org/10.1016/j.genrep.2022.101546

Swarup V, Ghosh J, Ghosh S, Basu SA, A, (2007) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51:3367–3370. https://doi.org/10.1128/AAC.00041-07

Tsukamoto Y, Ikeda S, Uwai K, Taguchi R, Chayama K, Sakaguchi T, Narita R, Yao W, Takeuchi F, Otakaki Y, Watashi K, Wakita T, Kato H (2018) Rosmarinic acid is a novel inhibitor for hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS One 13:197664. https://doi.org/10.1371/journal.pone.0197664

Vijayakumar S, Prabhu S, Rajalakhsmi S, Manogar P (2016) Review on potential phytocompounds in drug development for Parkinson disease: a pharmacoinformatic approach. Inform Med Unlock 5:15–25. https://doi.org/10.1016/j.imu.2016.09.00

Vijayakumar S, Sathiya M, Arulmozhi P, Prabhu S, Manogar P, Vinothkannan R, Parameswari N (2018) Molecular docking and ADME properties of bioactive molecules against human acid-beta-glucosidase enzyme, cause of Gaucher’s disease. In Silico Pharmacol 6:3. https://doi.org/10.1007/s40203-018-0039-3

Wahab NZA, Ibrahim N, Kamarudin MKA, Lananan F, Juahir H, Ghazali A (2018) In vitro antiviral activity of Orthosiphon stamineus extract against dengue virus type 2. J Fundam Appl Sci 10:541–551. https://doi.org/10.4314/jfas.v10i1s.38

Wang H, Zhang J, Lu Z, Dai W, Ma C, Xiang Y, Zhang Y (2021) Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Brief Bioinform 23:bbab373. https://doi.org/10.1093/bib/bbab373

Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765. https://doi.org/10.1128/JVI.02283-06