¿Podrían ayudarnos los algoritmos de machine learning en la predicción de hemorragia masiva a nivel prehospitalario?
Tài liệu tham khảo
Norton, 2013, Injuries, N Engl J Med, 368, 1723, 10.1056/NEJMra1109343
Cantle, 2017, Prediction of massive transfusion in trauma, Crit Care Clin., 33, 71, 10.1016/j.ccc.2016.08.002
Cotton, 2011, Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients, Ann Surg., 254, 598, 10.1097/SLA.0b013e318230089e
Mitra, 2012, Predicting massive blood transfusion using clinical scores post-trauma, Vox Sang., 102, 324, 10.1111/j.1423-0410.2011.01564.x
Terceros-Almanza, 2019, Prediction of massive bleeding in a prehospital setting: Validation of six scoring systems, Med Intensiva (Engl Ed)., 43, 131, 10.1016/j.medin.2017.12.005
Brockamp, 2012, Predicting on-going hemorrhage and transfusion requirement after severe trauma: A validation of six scoring systems and algorithms on the TraumaRegister DGU, Crit Care., 16, R129, 10.1186/cc11432
Greco, 2021, Artificial intelligence in the intensive care unit, Semin Respir Crit Care Med., 42, 2, 10.1055/s-0040-1719037
Gutierrez, 2020, Artificial intelligence in the intensive care unit, Crit Care., 24, 101, 10.1186/s13054-020-2785-y
Nunez, 2010, Creation, implementation, and maturation of a massive transfusion protocol for the exsanguinating trauma patient, J Trauma., 68, 1498
SAMUR-Protección Civil. Manual de procedimientos [consultado 27 Sep 2022]. Disponible en: https://www.madrid.es/ficheros/SAMUR/index.html.
Yucel, 2006, Trauma Associated Severe Hemorrhage (TASH)-Score: Probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma, J Trauma., 60, 1228, 10.1097/01.ta.0000220386.84012.bf
Maegele, 2011, Revalidation and update of the TASH-Score: A scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury, Vox Sang., 100, 231, 10.1111/j.1423-0410.2010.01387.x
Kalkwarf KJ, Goodman MD, Press GM, Wade CE, Cotton BA. Prehospital ABC score accurately forecasts patients who will require immediate resource utilization. South Med J. 2021;114:193-8. https://doi.org/10.14423/SMJ.0000000000001236.
Kuhne, 2008, Emergency Transfusion Score (ETS): A useful instrument for prediction of blood transfusion requirement in severely injured patients, World J Surg., 32, 1183, 10.1007/s00268-007-9425-4
Vandromme, 2011, Identifying risk for massive transfusion in the relatively normotensive patient: Utility of the prehospital shock index, J Trauma., 70, 384
Terceros-Almanza, 2017, Prediction of massive bleeding. Shock index and modified shock index, Med Intensiva., 41, 532, 10.1016/j.medin.2016.10.016
Larson, 2010, Association of shock, coagulopathy, and initial vital signs with massive transfusion in combat casualties, J Trauma., 69, S26
Hong, 2022, State of the art of machine learning-enabled clinical decision support in intensive care units: Literature review, JMIR Med Inform., 10, e28781, 10.2196/28781
Collins, 2015, Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement, BMJ., 350, g7594, 10.1136/bmj.g7594
Breiman, 2001, Statistical modeling: The two cultures (with comments and a rejoinder by the author), Statist Sci, 16, 199, 10.1214/ss/1009213726
Shillan, 2019, Use of machine learning to analyse routinely collected intensive care unit data: A systematic review, Crit Care., 23, 284, 10.1186/s13054-019-2564-9
Chang, 2022, Machine learning-based suggestion for critical interventions in the management of potentially severe conditioned patients in emergency department triage, Sci Rep., 12, 10537, 10.1038/s41598-022-14422-4
Zhao, 2022, A new time-window prediction model for traumatic hemorrhagic shock based on interpretable machine learning, Shock., 57, 48, 10.1097/SHK.0000000000001842
Lammers, 2022, Machine learning for military trauma: Novel massive transfusion predictive models in combat zones, J Surg Res., 270, 369, 10.1016/j.jss.2021.09.017