¿Podrían ayudarnos los algoritmos de machine learning en la predicción de hemorragia masiva a nivel prehospitalario?

Medicina Intensiva - Tập 47 - Trang 681-690 - 2023
Marcos Valiente Fernández1, Carlos García Fuentes1, Francisco de Paula Delgado Moya1, Adrián Marcos Morales1, Hugo Fernández Hervás1, Jesús Abelardo Barea Mendoza1, Carolina Mudarra Reche1, Susana Bermejo Aznárez1, Reyes Muñoz Calahorro1, Laura López García1, Fernando Monforte Escobar2, Mario Chico Fernández1
1UCI de Trauma y Emergencias, Hospital Universitario 12 de Octubre, Madrid, España
2Servicio de Asistencia Municipal de Urgencia y Rescate (SAMUR)-Protección Civil,Madrid, España

Tài liệu tham khảo

Norton, 2013, Injuries, N Engl J Med, 368, 1723, 10.1056/NEJMra1109343 Cantle, 2017, Prediction of massive transfusion in trauma, Crit Care Clin., 33, 71, 10.1016/j.ccc.2016.08.002 Cotton, 2011, Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients, Ann Surg., 254, 598, 10.1097/SLA.0b013e318230089e Mitra, 2012, Predicting massive blood transfusion using clinical scores post-trauma, Vox Sang., 102, 324, 10.1111/j.1423-0410.2011.01564.x Terceros-Almanza, 2019, Prediction of massive bleeding in a prehospital setting: Validation of six scoring systems, Med Intensiva (Engl Ed)., 43, 131, 10.1016/j.medin.2017.12.005 Brockamp, 2012, Predicting on-going hemorrhage and transfusion requirement after severe trauma: A validation of six scoring systems and algorithms on the TraumaRegister DGU, Crit Care., 16, R129, 10.1186/cc11432 Greco, 2021, Artificial intelligence in the intensive care unit, Semin Respir Crit Care Med., 42, 2, 10.1055/s-0040-1719037 Gutierrez, 2020, Artificial intelligence in the intensive care unit, Crit Care., 24, 101, 10.1186/s13054-020-2785-y Nunez, 2010, Creation, implementation, and maturation of a massive transfusion protocol for the exsanguinating trauma patient, J Trauma., 68, 1498 SAMUR-Protección Civil. Manual de procedimientos [consultado 27 Sep 2022]. Disponible en: https://www.madrid.es/ficheros/SAMUR/index.html. Yucel, 2006, Trauma Associated Severe Hemorrhage (TASH)-Score: Probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma, J Trauma., 60, 1228, 10.1097/01.ta.0000220386.84012.bf Maegele, 2011, Revalidation and update of the TASH-Score: A scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury, Vox Sang., 100, 231, 10.1111/j.1423-0410.2010.01387.x Kalkwarf KJ, Goodman MD, Press GM, Wade CE, Cotton BA. Prehospital ABC score accurately forecasts patients who will require immediate resource utilization. South Med J. 2021;114:193-8. https://doi.org/10.14423/SMJ.0000000000001236. Kuhne, 2008, Emergency Transfusion Score (ETS): A useful instrument for prediction of blood transfusion requirement in severely injured patients, World J Surg., 32, 1183, 10.1007/s00268-007-9425-4 Vandromme, 2011, Identifying risk for massive transfusion in the relatively normotensive patient: Utility of the prehospital shock index, J Trauma., 70, 384 Terceros-Almanza, 2017, Prediction of massive bleeding. Shock index and modified shock index, Med Intensiva., 41, 532, 10.1016/j.medin.2016.10.016 Larson, 2010, Association of shock, coagulopathy, and initial vital signs with massive transfusion in combat casualties, J Trauma., 69, S26 Hong, 2022, State of the art of machine learning-enabled clinical decision support in intensive care units: Literature review, JMIR Med Inform., 10, e28781, 10.2196/28781 Collins, 2015, Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement, BMJ., 350, g7594, 10.1136/bmj.g7594 Breiman, 2001, Statistical modeling: The two cultures (with comments and a rejoinder by the author), Statist Sci, 16, 199, 10.1214/ss/1009213726 Shillan, 2019, Use of machine learning to analyse routinely collected intensive care unit data: A systematic review, Crit Care., 23, 284, 10.1186/s13054-019-2564-9 Chang, 2022, Machine learning-based suggestion for critical interventions in the management of potentially severe conditioned patients in emergency department triage, Sci Rep., 12, 10537, 10.1038/s41598-022-14422-4 Zhao, 2022, A new time-window prediction model for traumatic hemorrhagic shock based on interpretable machine learning, Shock., 57, 48, 10.1097/SHK.0000000000001842 Lammers, 2022, Machine learning for military trauma: Novel massive transfusion predictive models in combat zones, J Surg Res., 270, 369, 10.1016/j.jss.2021.09.017