$$M_{24}$$ -Orbits of Octad Triples
Tóm tắt
An octad triple is a set of three octads, octads being the blocks of the S(5, 8, 24) Steiner system. In this paper we determine the orbits of
$$M_{24}$$
, the largest Mathieu group, upon the set of octad triples.
Tài liệu tham khảo
Aschbacher, M.: Sporadic Groups. Cambridge Tracts in Mathematics, vol. 104. Cambridge University Press, Cambridge (1994)
Boston, N.: Private Communication
Boston, N.: A multivariate weight enumerator for tail-biting trellis pseudocodewords. J. Gen. Lie Theory Appl. 9(S1) (2015) (Art. ID S1-004)
Brouwer, A.E., Cuypers, H., Lambeck, E.W.: The hyperplanes of the \(M_{24}\) near polygon. Graphs Comb. 18(3), 415–420 (2002)
Calderbank, A.R., Forney Jr., G.D., Vardy, A.: Minimal tail-biting trellises: the Golay code and more. IEEE Trans. Inf. Theory 45(5), 1435–1455 (1999)
Choi, C.: On subgroups of \(M_{24}\). I. Stabilizers of subsets. Trans. Am. Math. Soc. 167, 1–27 (1972)
Conway, J.H.: Three lectures on exceptional groups. In: Finite Simple Groups (Proceedings of Instructional Conference, Oxford, 1969), pp. 215–247. Academic Press, London (1971)
Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. With Additional Contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290. Springer, New York (1999)
Curtis, R.T.: A new combinatorial approach to \(M_{24}\). Math. Proc. Camb. Philos. Soc. 79(1), 25–42 (1976)
Curtis, R.T.: The maximal subgroups of \(M_{24}\). Math. Proc. Camb. Philos. Soc. 81(2), 185–192 (1977)
Golay, M.J.E.: Notes on digital coding. Proc. IRE 37, 657 (1949)
Ronan, M.A., Smith, S.D.: 2-local geometries for some sporadic groups. In: The Santa Cruz Conference on Finite Groups (University of California, Santa Cruz, California, 1979), Proceedings of Symposia in Pure Mathematics, vol. 37, pp. 283–289. American Mathematical Society, Providence (1980)
Witt, E.: Die 5-fach transitiven gruppen von mathieu. Abh. Math. Sem. Univ. Hambg. 12(1), 256–264 (1937)
Witt, E.: Über Steinersche Systeme. Abh. Math. Sem. Univ. Hambg. 12(1), 265–275 (1937)