$$M_2$$-ranks of overpartitions modulo 6 and 10

Helen W. J. Zhang1
1Center for Applied Mathematics, Tianjin University, Tianjin, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrews, G.E.: The ranks and cranks of partitions moduli 2, 3, and 4. J. Number Theory 85, 74–84 (2000)

Andrews, G.E., Garvan, F.G.: Ramanujan’s “lost” notebook VI: the mock theta conjectures. Adv. Math. 73(2), 245–255 (1989)

Atkin, A.O.L., Hussain, S.M.: Some properties of partitions. II. Trans. Am. Math. Soc. 89, 184–200 (1958)

Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. Lond. Math. Soc. 66, 84–106 (1954)

Chan, S.H.: Generalized Lambert series identities. Proc. Lond. Math. Soc. 91, 598–622 (2005)

Choi, Y.-S.: Tenth order mock theta functions in Ramanujan’s lost notebook. Invent. Math. 136, 497–569 (1999)

Corteel, S., Lovejoy, J.: Overpartitions. Trans. Am. Math. Soc. 356, 1623–1635 (2004)

Dyson, F.J.: Some guesses in the theory of partitions. Eureka (Cambrige) 8, 10–15 (1944)

Garvan, F.G.: New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7, 11. Trans. Am. Math. Soc. 305, 47–77 (1988)

Garvan, F.G., Liang, J.: Automatic proof of theta-function identities (2016). http://qseries.org/fgarvan/qmaple/thetaids/autotheta.pdf

Hickerson, D.: On the seventh order mock theta functions. Invent. Math. 94, 661–677 (1988)

Hickerson, D., Mortenson, E.: Hecke-type double sums, Appell–Lerch sums, and mock theta functions, I. Proc. Lond. Math. Soc. (3) 109, 382–422 (2014)

Jennings-Shaffer, C.: Higher order SPT functions for overpartitions, overpartitions with smallest part even, and partitions with smallest part even and without repeated odd parts. J. Number Theory 149, 285–312 (2015)

Lewis, R.P.: On the ranks of partitions modulo 9. Bull. Lond. Math. Soc. 23, 417–421 (1991)

Lewis, R.P.: The ranks of partitions modulo 2. Discret. Math. 167(168), 445–449 (1997)

Liaw, W.-C.: Note on the monotonicity of coefficients for some $$q$$-series arising from Ramanujan’s lost notebook. Ramanujan J. 3(4), 385–388 (1999)

Lovejoy, J.: Rank and conjugation for the Frobenius representation of an overpartition. Ann. Comb. 9(3), 321–334 (2005)

Lovejoy, J.: Rank and conjugation for a second Frobenius representation of an overpartition. Ann. Comb. 12, 101–113 (2008)

Lovejoy, J., Osburn, R.: Rank differences for overpartitions. Q. J. Math. 59, 257–273 (2008)

Lovejoy, J., Osburn, R.: $$M_2$$-rank differences for overpartitions. Acta Arith. 144(2), 193–212 (2010)

Mao, R.: Ranks of partitions modulo 10. J. Number Theory 133, 3678–3702 (2013)

Mao, R.: The $$M_2$$-rank of partitions without repeated odd parts modulo 6 and 10. Ramanujan J. 37(2), 391–419 (2015)

Robins, S.: The Rademacher Legacy to Mathematics (University Park, PA, 1992). Contemporary Mathematics. Generalized Dedekind $$\eta $$-products, pp. 119–128. American Mathematical Society, Providence (1994)

Santa-Gadea, N.: On the ranks of partitions mod 9 and 12. J. Number Theory 40, 130–145 (1992)

Watson, G.N.: The final problem: an account of the mock theta functions. J. Lond. Math. Soc. 11, 55–80 (1936)