$$M_2$$-ranks of overpartitions modulo 6 and 10
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrews, G.E.: The ranks and cranks of partitions moduli 2, 3, and 4. J. Number Theory 85, 74–84 (2000)
Andrews, G.E., Garvan, F.G.: Ramanujan’s “lost” notebook VI: the mock theta conjectures. Adv. Math. 73(2), 245–255 (1989)
Atkin, A.O.L., Hussain, S.M.: Some properties of partitions. II. Trans. Am. Math. Soc. 89, 184–200 (1958)
Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. Lond. Math. Soc. 66, 84–106 (1954)
Choi, Y.-S.: Tenth order mock theta functions in Ramanujan’s lost notebook. Invent. Math. 136, 497–569 (1999)
Dyson, F.J.: Some guesses in the theory of partitions. Eureka (Cambrige) 8, 10–15 (1944)
Garvan, F.G.: New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7, 11. Trans. Am. Math. Soc. 305, 47–77 (1988)
Garvan, F.G., Liang, J.: Automatic proof of theta-function identities (2016). http://qseries.org/fgarvan/qmaple/thetaids/autotheta.pdf
Hickerson, D., Mortenson, E.: Hecke-type double sums, Appell–Lerch sums, and mock theta functions, I. Proc. Lond. Math. Soc. (3) 109, 382–422 (2014)
Jennings-Shaffer, C.: Higher order SPT functions for overpartitions, overpartitions with smallest part even, and partitions with smallest part even and without repeated odd parts. J. Number Theory 149, 285–312 (2015)
Liaw, W.-C.: Note on the monotonicity of coefficients for some $$q$$-series arising from Ramanujan’s lost notebook. Ramanujan J. 3(4), 385–388 (1999)
Lovejoy, J.: Rank and conjugation for the Frobenius representation of an overpartition. Ann. Comb. 9(3), 321–334 (2005)
Lovejoy, J.: Rank and conjugation for a second Frobenius representation of an overpartition. Ann. Comb. 12, 101–113 (2008)
Lovejoy, J., Osburn, R.: $$M_2$$-rank differences for overpartitions. Acta Arith. 144(2), 193–212 (2010)
Mao, R.: The $$M_2$$-rank of partitions without repeated odd parts modulo 6 and 10. Ramanujan J. 37(2), 391–419 (2015)
Robins, S.: The Rademacher Legacy to Mathematics (University Park, PA, 1992). Contemporary Mathematics. Generalized Dedekind $$\eta $$-products, pp. 119–128. American Mathematical Society, Providence (1994)