$$L_q$$ L q -estimates for stationary Stokes system with coefficients measurable in one direction

Hongjie Dong1, Doyoon Kim2
1Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
2Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abidi, H., Gui, G., Zhang, P.: On the decay and stability of global solutions to the 3D inhomogeneous Navier–Stokes equations. Commun. Pure Appl. Math. 64(6), 832–881 (2011)

Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

Amrouche, C., Girault, V.: On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Jpn. Acad. Ser. A Math. Sci. 67(5), 171–175 (1991)

Aimar, Hugo, Macías, Roberto A.: Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type. Proc. Am. Math. Soc. 91(2), 213–216 (1984)

Auscher, Pascal: Russ, Emmanuel, Tchamitchian, Philippe: Hardy Sobolev spaces on strongly Lipschitz domains of $$\mathbb{R}^n$$ R n . J. Funct. Anal. 218(1), 54–109 (2005)

Brown, R.M., Shen, Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44(4), 1183–1206 (1995)

Bulíček, M., Málek, J., Rajagopal, K.R.: Navier’s slip and evolutionary Navier–Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56(1), 51–85 (2007)

Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)

Choi, Jongkeun: Lee, Ki-Ahm: The green function for the Stokes system with measurable coefficients. Commun. Pure Appl. Anal. 16(6), 1989–2022 (2017)

Christ, Michael: A $$T(b)$$ T ( b ) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2), 601–628 (1990)

Dindoš, M., Mitrea, M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and $$C^1$$ C 1 domains. Arch. Ration. Mech. Anal. 174(1), 1–47 (2004)

Dong, H., Kim, D.: On $$L_p$$ L p -estimates for elliptic and parabolic equations with $$A_p$$ A p weights. Trans. Am. Math. Soc. arXiv:1603.07844 (2016). (to appear)

Dong, H., Kim, D.: Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular and irregular domains. J. Funct. Anal. 261(11), 3279–3327 (2011)

Dong, H., Kim, D.: Parabolic and elliptic systems in divergence form with variably partially BMO coefficients. SIAM J. Math. Anal. 43(3), 1075–1098 (2011)

Dong, H., Kim, D.: Weighted L $$_q$$ q -estimates for stationary Stokes system with partially BMO coefficients. J. Differ. Equ. 264(7), 4603–4649 (2018)

Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57(3), 769–793 (1988)

Franta, M., Málek, J., Rajagopal, K.R.: On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2055), 651–670 (2005)

Galdi, G.P., Simader, C.G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Math. Pure Appl. 4(167), 147–163 (1994)

Geng, J., Kilty, J.: The $$L^p$$ L p regularity problem for the Stokes system on Lipschitz domains. J. Differ. Equ. 259(4), 1275–1296 (2015)

Giaquinta, M., Modica, G.: Nonlinear systems of the type of the stationary Navier–Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126(1), 1–33 (2012)

Kang, Kyungkeun: On regularity of stationary Stokes and Navier–Stokes equations near boundary. J. Math. Fluid Mech. 6(1), 78–101 (2004)

Kim, Doyoon: Krylov, N.V.: Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others. SIAM J. Math. Anal. 39(2), 489–506 (2007)

Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial Differ. Equ. 32(1–3), 453–475 (2007)

Krylov, N.V.: Second-order elliptic equations with variably partially VMO coefficients. J. Funct. Anal. 257(6), 1695–1712 (2009)

Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Volume 96 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2008)

Ladyženskaya, O.A.: Investigation of the Navier–Stokes equation for stationary motion of an incompressible fluid. Uspehi Mat. Nauk 14(3), 75–97 (1959)

Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, 3, vol. 1, p. xiv+237. Oxford Science Publications, New York (1996)

Ladyženskaya, O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. Boundary value problems of mathematical physics, and related questions of the theory of functions, 8. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52, 52–109, 218–219 (1975)

Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321(4), 955–987 (2001)

Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque No. 344, viii+241 pp (2012)

Shen, Z.: A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc. Am. Math. Soc. 123(3), 801–811 (1995)

Sobolevskiĭ, P.E.: On the smoothness of generalized solutions of the Navier–Stokes equations. Dokl. Akad. Nauk SSSR 131, 758–760 (1960). (Russian; translated as Soviet Math. Dokl., 1:341–343)

Vorovič, I.I., Judovič, V.I.: Steady flow of a viscous incompressible fluid. Mat. Sb. (N.S.) 53(95), 393–428 (1961). (Russian)