$$L^p$$ -Đồng sinh, nhóm bán nhóm nhiệt và không gian phân lớp

The Journal of Geometric Analysis - Tập 33 - Trang 1-44 - 2023
Francesco Bei1
1Dipartimento di Matematica, Sapienza Università di Roma, Rome, Italy

Tóm tắt

Giả sử (M, g) là một đa tạp Riemann chưa đầy đủ có thể tích hữu hạn và $$2\le p<\infty $$. Trong phần đầu tiên của bài báo này, chúng tôi chứng minh rằng dưới một số giả thiết nhất định, việc bao hàm không gian của các dạng vi phân $$L^p$$ vào không gian của các dạng vi phân $$L^2$$ sẽ dẫn đến một ánh xạ tiêm/biến hình giữa các nhóm đồng sinh $$L^p$$ và $$L^2$$ tương ứng. Sau đó, ở phần thứ hai, chúng tôi cung cấp nhiều ứng dụng của những kết quả này cho độ cong và đồng sinh giao của các pseudomanifold phân lớp Thom–Mather compact và các biến thể dự án phức tạp chỉ có các điểm kỳ dị đơn lẻ.

Từ khóa

#Đồng sinh #Dạng vi phân #Đa tạp Riemann #Độ cong #Pseudomanifold #Biến thể dự án phức tạp

Tài liệu tham khảo

Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on stratified spaces. Geom. Funct. Anal. 24(4), 1039–1079 (2014) Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: The signature package on Witt spaces. Ann. Sci. Éc. Norm. Supér. (4) 45(2), 241–310 (2012) Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: Hodge theory on Cheeger spaces. J. Reine Angew. Math. 744, 29–102 (2018) Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics, Springer, Berlin (2007) Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 348. Springer, Cham (2014) Bei, F.: Poincaré duality, Hilbert complexes and geometric applications. Adv. Math. 267, 121–175 (2014) Bei, F.: Sobolev spaces and Bochner Laplacian on complex projective varieties and stratified pseudomanifolds. J. Geom. Anal. 27(1), 746–796 (2017) Bei, F.: Symplectic manifolds, \(L^p\)-cohomology and \(q\)-parabolicity. Differ. Geom. Appl. 64, 136–157 (2019) Bei, F., Gueneysu, B.: \(q\)-Parabolicity of stratified pseudomanifolds and other singular spaces. Ann. Glob. Anal. Geom. 51(3), 267–286 (2017) Borel, A., et al.: Intersection Cohomology. Prog. Math., vol. 50, Birkhäuser, Boston (1984) Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982) Brasselet, J.P., Goresky, M., MacPherson, R.: Simplicial differential forms with poles. Am. J. Math. 113(6), 1019–1052 (1991) Brasselet, J.P., Hector, G., Saralegi, M.: \(L^2-\)cohomologie des espaces statifiés. Manuscripta Math. 76, 21–32 (1992) Brasselet, J., Hector, G., Saralegi, M.: Théorème de de Rham pour les variétés stratifiées. Ann. Glob. Anal. Geom. 9(3), 211–243 (1991) Brüning, J.: The signature operator on manifolds with a conical singular stratum. Astérisque No. 328(2009), 1–44 (2010) Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108(1), 88–132 (1992) Brüning, J., Lesch, M.: Kähler-Hodge theory for conformal complex cones. Geom. Funct. Anal. 3(5), 439–473 (1993) Cheeger, J.: Jeff. On the Hodge Theory of Riemannian Pseudomanifolds. Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, University of Hawaii, Honolulu, Hawaii, 1979), pp. 91–146, Proceedings of Symposia in Pure Mathematics, XXXVI, American Mathematical Society, Providence, RI (1980) Cheeger, J., Goresky, M., MacPherson, R.: \(L^2\)-Cohomology and Intersection Homology of Singular Algebraic Varieties. Seminar on Differential Geometry, pp. 303–340. Annals of Mathematics Studies, vol. 102. Princeton University Press, Princeton, NJ (1982) Chou, A.W.: The Dirac operator on spaces with conical singularities and positive scalar curvatures. Trans. Am. Math. Soc. 289(1), 1–40 (1985) Gol’dshtein, V., Troyanov, M.: A short proof of the Hölder-Poincaré duality for \(L_p\)-cohomology. Rend. Semin. Mat. Univ. Padova 124, 179–184 (2010) Gol’dshtein, V., Troyanov, M.: The Hölder-Poincaré duality for \(L_{p, q}\)-cohomology. Ann. Glob. Anal. Geom. 41, 25–45 (2012) Gol’dshtein, V., Troyanov, M.: Sobolev inequality for differential forms and \(L_{q, p}\)-cohomology. J. Geom. Anal. 16(4), 597–631 (2006) Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19, 135–162 (1980) Goresky, M., MacPherson, R.: Intersection homology II. Invent. Math. 72, 77–129 (1983) Grieser, D., Lesch, M.: On the \(L^2\)-Stokes theorem and Hodge theory for singular algebraic varieties. Math. Nachr. 246(247), 68–82 (2002) Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Reprint of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York (1994) Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence, RI; International Press, Boston, MA (2009) Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Operator Theory: Advances and Applications, vol. 264. Birkhäuser/Springer, Cham (2017) Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977) Hsiang, W.C., Pati, V.: \(L^2\)-cohomology of normal algebraic surfaces. I. Invent. Math. 81(3), 395–412 (1985) Kato, T.: Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Classics in Mathematics. Springer, Berlin (1995) Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman Hall/CRC, London (2006) Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012) Li, P., Tian, G.: On the heat kernel of the Bergmann metric on algebraic varieties. J. Am. Math. Soc. 8(4), 857–877 (1995) Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. (N.S.) 49(4), 475–506 (2012) Mondello, I.: The local Yamabe constant of Einstein stratified spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(1), 249–275 (2017) Nagase, M.: \(L^2\)-cohomology and intersection homology of stratified spaces. Duke Math. J. 50(1), 329–368 (1983) Ohsawa, T.: Cheeger-Goreski-MacPherson’s conjecture for the varieties with isolated singularities. Math. Z. 206(2), 219–224 (1991) O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966) Piazza, P., Vertman, B.: Eta and rho invariants on manifolds with edges. Ann. Inst. Fourier (Grenoble) 69(5), 1955–2035 (2019) Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique. Progress in Mathematics, vol. 266. Birkhäuser Verlag, Basel (2008) Schmüdgen, K.: Unbounded self-adjoint operators on Hilbert space. Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012) Troyanov, M.: Parabolicity of manifolds. Sib. Adv. Math. 9(4), 125–150 (1999) Valette, G.: \(L^{\infty }\) cohomology is intersection cohomology (English summary). Adv. Math. 231(3–4), 1818–1842 (2012) Verona, A.: Stratified Mappings-Structure and Triangulability. Lecture Notes in Mathematics, vol. 1102. Springer, Berlin (1984) Vertman, B.: Ricci De Turck Flow on singular manifolds. arxiv:1603.06545 Vilms, J.: Totally geodesic maps. J. Differ. Geom. 4, 73–79 (1970) Youssin, B.: \(L^p\)-cohomology of cones and horns. J. Differ. Geom. 39, 559–603 (1994) Zhang, Q.S.: Sobolev Inequalities, Heat Kernels Under Ricci Flow, and the Poincaré Conjecture. CRC Press, Boca Raton, FL (2011)