$$L^\infty $$ Instability of Prandtl Layers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)
Drazin, P.G., Reid, W. H.: Hydrodynamic stability, 2nd edition. In: With a foreword by John Miles (ed.) Cambridge mathematical library. Cambridge University Press, Cambridge (2004)
Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)
Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier-Stokes flows. Duke Math. J. 167(13), 2531–2631 (2018)
Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)
Gérard-Varet, D., Nguyen, T.T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)
Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)
Grenier, E., Guo, Y., Nguyen, T.T.: Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)
Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)
Grenier, E., Nguyen, T.T.: Green function of Orr-Sommerfeld equations away from critical layers SIAM. J. Math. Anal. 51(2), 1279–1296 (2019)
Grenier, E., Nguyen, T.T.: Sublayer of prandtl boundary layers. Arch. Ration. Mech. Anal. 229(3), 1139–1151 (2018)
Grenier, E., Nguyen, T. T.: On nonlinear instability of Prandtl’s boundary layers: the case of Rayleigh’s stable shear flows. arXiv:1706.01282 (2017)
Grenier, E., Nguyen, T.T.: Green function of Orr-Sommerfeld equations away from critical layers. SIAM J. Math. Anal. 51(2), 1279–1296 (2019)
Guo, Y., Nguyen, T.T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)
Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)
Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)
Masmoudi, N., Rousset, F.: Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)
Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)
Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory. Applied mathematics and mathematical computation, vol. 15. Chapman & Hall/CRC, Boca Raton (1999)
Paddick, M.: Stability and instability of Navier boundary layers. Differ. Integr. Eq. 27(9–10), 893–930 (2014)
Prandtl, L. : Uber flüssigkeits-bewegung bei sehr kleiner reibung. pp. 484–491, (1904)
Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)
Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)