$$L^\infty $$ Instability of Prandtl Layers

Emmanuel Grenier1, Toan T. Nguyen2
1Unité de Mathématiques Pures et Appliquées., UMR 5669, CNRS et École Normale Supérieure de Lyon, Equipe Projet Inria NUMED, INRIA Rhône Alpes, Lyon Cedex 07, France
2Department of Mathematics, Penn State University, State College, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)

Drazin, P.G., Reid, W. H.: Hydrodynamic stability, 2nd edition. In: With a foreword by John Miles (ed.) Cambridge mathematical library. Cambridge University Press, Cambridge (2004)

Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier-Stokes flows. Duke Math. J. 167(13), 2531–2631 (2018)

Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)

Gérard-Varet, D., Nguyen, T.T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

Grenier, E., Guo, Y., Nguyen, T.T.: Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)

Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

Grenier, E., Nguyen, T.T.: Green function of Orr-Sommerfeld equations away from critical layers SIAM. J. Math. Anal. 51(2), 1279–1296 (2019)

Grenier, E., Nguyen, T.T.: Sublayer of prandtl boundary layers. Arch. Ration. Mech. Anal. 229(3), 1139–1151 (2018)

Grenier, E., Nguyen, T. T.: On nonlinear instability of Prandtl’s boundary layers: the case of Rayleigh’s stable shear flows. arXiv:1706.01282 (2017)

Grenier, E., Nguyen, T.T.: Green function of Orr-Sommerfeld equations away from critical layers. SIAM J. Math. Anal. 51(2), 1279–1296 (2019)

Guo, Y., Nguyen, T.T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)

Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)

Masmoudi, N., Rousset, F.: Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)

Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory. Applied mathematics and mathematical computation, vol. 15. Chapman & Hall/CRC, Boca Raton (1999)

Paddick, M.: Stability and instability of Navier boundary layers. Differ. Integr. Eq. 27(9–10), 893–930 (2014)

Prandtl, L. : Uber flüssigkeits-bewegung bei sehr kleiner reibung. pp. 484–491, (1904)

Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

Schlichting, H., Gersten, K.: Boundary-layer theory, 8th revised and enlarged edition. Springer, Heidelberg (2000)